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ARTICLE INFO ABSTRACT

Keywords: The spatial resolution of microscopic images acquired via X-ray Fourier-transform holography is limited by the
X-ray imaging source size of the reference wave and by the numerical aperture of the detector. We analyze the interplay
Holography between both influences and show how they are matched in practice. We further identify, how high spatial
Resolution

frequencies translate to imaging artifacts in holographic reconstructions where mainly the reference beam limits
the spatial resolution. As a solution, three methods are introduced based on numerical post-processing of the
reconstruction. The methods comprise apodization of the hologram, refocusing via wave propagation, and de-
convolution using the transfer function of the imaging system. In particular for the latter two, we demonstrate
that image details smaller than the source size of the reference beam can be recovered up to the diffraction limit
of the hologram. Our findings motivate the intentional application of a large reference-wave source enhancing
the image contrast in applications with low photon numbers such as single-shot experiments at free-electron

lasers or imaging at laboratory sources.

1. Introduction

X-ray Fourier-transform holography (FTH) is a coherent, lensless
imaging method that offers high spatial resolution as well as high
photon efficiency in conjunction with a simple and robust scattering
setup [1]. Since the access to the sample is not hindered by any X-ray
optics, FTH has great flexibility for the design of pump-probe experi-
ments with state-of-the-art resolution in time and space. In the past
years, these unique FTH features have mostly been utilized to study
functional magnetic thin films [2-5] and nanostructures [6,7] by ex-
ploiting the X-ray magnetic circular dichroism as contrast mechanism.
Time-resolved holography experiments have been demonstrated at 3rd-
generation synchrotron-radiation sources [8,9], free-electron lasers
(FEL) [10] and table-top EUV laser [11]. Even though magnetic thin
films are currently the main application of FTH imaging, the method
has recently been applied to study nanometer-scale phase-separation in
a correlated material [12] and to image a free-flying virus [13].

In the most common implementation of FTH, the field of view (FOV)
is defined by a micrometer-sized object aperture, integrated in an
otherwise opaque metal film. The source of the phase-encoding re-
ference beam is a small pinhole of few tens of nanometer in diameter
laterally offset to the object aperture. By illuminating such an
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integrated mask with a coherent X-ray beam, the interference pattern
between the beams transmitted through both apertures, which con-
stitutes the hologram, can be recorded in the far field. The re-
construction of the complex wave field exiting the object is determined
by a Fourier transform of the hologram returning the cross-correlation
of the reference pinhole’s exit wave and the object wave [1,14]. The
image formation by the cross-correlation is the first limitation of the
spatial resolution in an FTH experiment. In addition, the resolution of
the reconstruction is limited by the maximum momentum transfer up to
which the hologram can be recorded, be it due to finite detector size or
signal-to-noise ratio being too small at high momentum transfer. In this
work, we consider the first case, where the finite size of the detector
acts as a low-pass filter for the hologram reconstruction. Regarding the
geometric limitations, both the FTH system’s angular resolution set by
the detectors numerical aperture (NA) as well as the reference pinhole
affect the spatial resolution and should ideally be matched for best
overall performance of the imaging system.

Present-day X-ray area detectors enable large NAs due to their di-
mensions while reference pinholes provide only limited scattering an-
gles due to their finite extend. Pinhole references, thus, represent a
bottleneck in terms of real-space resolution. Apart from their influence
on the spatial resolution, the size of the reference pinhole also affects
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the photon efficiency of the method, as the reference signal on the
detector and ultimately the image contrast in the reconstruction will
diminish for smaller and, thus, higher-resolution pinholes, ultimately
leading to an imbalance between the intensity of the object and re-
ference wave. The choice of the reference pinhole diameter is therefore
merely a compromise that trades photon efficiency for spatial resolu-
tion. Experimental or numerical (i.e., post-experimental) solutions to
improve the efficiency or resolution independently from each other will
directly improve the method’s productivity at synchrotron-radiation
sources where FTH is already routinely applied. More importantly, new
solutions are needed to increasingly apply FTH in femtosecond time-
resolved experiments at high-harmonic generation sources [15-17] or
single-shot experiments at FELs [10,18-20] where the number of
available photons is limited in both cases.

A feasible way out of the dilemma is to manufacture an integrated
mask with extended references such as pinhole arrays [21,22], Fresnel
zone plates [23] or extended shapes with sharp edges (e.g., a slit or
triangle) based on the so-called HERALDO principle [3,9,24]. Such
approaches are especially promising to drastically boost the reference
signal strength and, thus, the image contrast in the reconstruction,
provided the reference beam intensity is limiting the hologram mod-
ulation at high momentum transfer. Much like pinhole references,
however, the spatial resolution that can ideally be provided by ex-
tended references is still limited by manufacturability constraints and
not by the maximum scattering angle recorded by the holography
setup. In contrast to common, diffraction-limited imaging systems
where features smaller than the diffraction limit are absent in the
image, a strongly reference-limited hologram still contains high-re-
solution information but the standard reconstruction method fails to
correctly reproduce the features associated with this information.

Previous attempts to recover this information are predominately
based on iterative phase-retrieval algorithms. While these algorithms
were initially developed to reconstruct a real-space image from the
measured coherent diffraction pattern of the sample alone, a method
referred to as coherent diffraction imaging (CDI) [25], the same pro-
cedure using the hologram as CDI input was employed for refinements
of FTH reconstructions in  proof-of-principle experiments
[17,20,21,26,27]. Typically, the holographic information content in the
data is hardly exploited in these attempts. Consequentially, CDI re-
finement suffers from the same limitations as CDI itself: First, if the
sample is highly symmetric, CDI frequently fails to find a unique so-
lution. Second, CDI is extremely sensitive to the input data quality. In
particular, missing or deficient scattering information at low scattering
angles severely hamper the convergence. As a result, previous test ex-
periments have typically imaged artificial samples with a high degree of
asymmetry, high (typically binary) contrast and a composition of pri-
marily high spatial frequencies [20,21,26] which is in stark contrast to
the situation found in many imaging applications, e.g., for materials
science.

In this study, we discuss the limitation of pinhole references in
large-NA setups in detail. In particular, we attribute imaging artifacts in
the reconstruction to the scattering signal at large momentum transfer
originating from object features that are smaller than the reference
pinhole utilized. We propose design parameters for conventional FTH to
match the reference size and the angular resolution of the scattering
geometry in order to circumvent the artifacts discussed and to deliver
an optimized reference signal. For strongly reference-limited holograms
where the angular resolution of the scattering geometry is superior to
the reference size, we demonstrate two post-experimental methods that
allow translating the cause of the artifacts, i.e., the scattering signal at
large momentum transfer, into an enhancement of the real-space re-
solution. The first method relies on free-space propagation [28,29] of
the reconstruction and does not require any knowledge about the exact
shape of the reference pinhole whereas the second method aims to
characterize the reference source to enable a holographic reconstruc-
tion with potentially diffraction-limited resolution via deconvolution.
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Both numerical methods deliver unambiguous solutions, are straight-
forward to apply to the holography data and can, thus, be effectively
integrated into online image reconstruction.

2. Theory

Considering transmission functions of a reference pinhole p(r) as
well as an arbitrary object o(r) that are separated by the vector r in the
mask plane, the hologram recorded by a detector in the far field over an
area of Ap(q) can be described by the interference term:

H(g) = Ap(@) IFlp(r — )] + Flo()|P €9)

= Ap(@{FIp(M)IP + IF[o(M)]P
+FlpM]F*o(r — r)]
+Flo(r + )17 *[p(M)]}, @

with r and q being real and reciprocal space coordinates, respectively,
and ¥ denoting the Fourier transform and #* the complex conjugate of
the Fourier transform.

The detector area Ap(q) can also be conceived as the imaging sys-
tem’s pupil function which in the simplest case is unity inside the
boundaries of the sensitive detector area and zero outside [30]. Upon
Fourier transforming the hologram H(q), the first two intensity terms on
the right side of the expanded Eq. (2) yield the central autocorrelation
whereas the second two terms result in two redundant, conjugated
cross-correlations, constituting the actual reconstruction, i.e., image of
the exit wave leaving the object.

2.1. Point-spread function and transfer function

Only for infinitely large detectors, the real-space reconstruction
would be given by the cross-correlation of the complex transmission
functions of reference pinhole and the object. For experimentally re-
corded holograms, the actual point-spread function (PSF) of the FTH
imaging system, however, depends on how the interference pattern is
low-pass filtered by the detector area Ap(q), i.e., on the pupil function
in the far field. The transfer of the object’s spatial frequencies into the
reconstruction depending on their wave vector g can be described by
defining the transfer function (TF) of the FTH imaging system:

TF(g) = Ap(@F [p(r)]. 3

The point-spread function (PSF) is then given by the Fourier transfor-
mation of the TF resulting in a convolution (*) of the reference pinhole
shape and the Fourier transform of Ap(q):

PSF(r) = F[TF(q)] @

= FlAp(@*p (). )

2.2. Circular reference wave source

In the common implementation of FTH, a circular aperture is em-
ployed as source of the reference wave. The far-field diffraction #[p(r)]
from the aperture with diameter d,.f = 21 is given by Goodman [30]:

2Jl (q Tref )
Qlref (6)

The wave field is isotropic and only depends on the magnitude of the
wave vector (g = Iql). J; denotes the Bessel function of first kind and E,
is a scaling factor which describes the maximum field amplitude of the
reference beam on the detector. For a given X-ray wavelength (A) and
distance of the detector to the specimen, the extent of E..{(q) scales
inversely with the radius of the reference pinhole while the detector
area Ap(q) which restricts TF(q) remains constant. Different from most
lens-based imaging systems, the transfer function of an FTH system
using a large detector, thus, exhibits negative frequency bands (blue

Eref (Q) =E,
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Fig. 1. Transfer function of a Fourier-transform holography imaging system.
The plots show the far-field diffraction (real part) from a circular reference
pinhole with three different diameters. The scattering is compared with the
detector size indicated by the gray-shaded area. In the optimal case (), the first
zero of the reference pinhole’s diffraction matches the largest scattering angle
that can be recorded by the detector (red). For scattering geometries with
smaller reference size (here: d,s = 0.5d,) and corresponding larger Airy disk,
the reconstruction becomes increasingly detector limited (green). For scattering
geometries that accommodate higher orders of the reference pinhole’s diffrac-
tion on the detector (here: d..s = 4d,), the reconstruction becomes more re-
ference-limited (blue). Negative side lobes of the Bessel function are transferred
into the reconstruction with reversed amplitude resulting in imaging artifacts in
the reconstruction for corresponding spatial periods. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

curve in Fig. 1). Since the transfer function is generally unknown, fre-
quencies outside the first zero-crossing cannot contribute to the spatial
resolution of the reconstruction as these frequencies may or may not be
reversed in amplitude. Common, diffraction-limited imaging systems
have non-negative transfer functions and a defined cut-off frequency
which excludes features below the resolution limit from the real-space
image. On the contrary, the non-zero amplitudes of the transfer func-
tion beyond the first zero-crossing still transfer spatial information
smaller than d,.f into the reconstruction [31]. The inversion of various
spatial frequencies for structures smaller than d,.;, however, leads to an
appearance of features in the reconstruction that do not resemble the
actual specimen. In the following, we, thus, label these artificial fea-
tures contrast-inversion artifacts and describe three methods to rectify
this artifact. In particular the last method based on deconvolution also
significantly improves the spatial resolution.

2.3. Low-pass filtering

A direct approach to circumvent contrast-inversion artifacts is to
delete all spatial frequencies in the hologram that correspond to the
negative side bands of the transfer function. This can easily be achieved
by applying a circular low-pass filter with a radius that matches the first
zero of the reference pinhole diffraction (E,f(q)) on the hologram re-
corded. The application of such a window function (so-called apodi-
zation) results in a non-negative transfer function that is given by the
central (positive) part of the reference pinhole’s diffraction and there-
fore smoothly suppresses the amplitudes of increasing spatial fre-
quencies of the object. In addition to eliminating the contrast-inversion
artifact, such a naturally apodized transfer function results in a re-
construction with suppressed edge ringing [30] and an image contrast
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that decreases strictly monotonic for higher spatial frequencies. The
numerical aperture of this imaging system is simply given by the radius
of the apodization window.

In order to optimally exploit the detector area, the FTH system’s NA
can be adjusted such that the first zero-crossing of E,.f(q), i.e., the size
of the reference wave’s Airy disk matches the boundaries of the detector
area (red curve in Fig. 1). In order to account for commonly square-
shaped detectors, matching the NA ideally also involves the application
of a circular windowing as described above. We consider such a con-
figuration an optimal trade-off between photon efficiency and spatial
resolution. For a broader Airy disk (i.e., smaller reference diameter)
with the first zero outside the boundaries of the detector, the transfer
function becomes increasingly dominated by the shape of the detector
(Ap(q) in Eq. (3)). In this case, the FTH system becomes increasingly
diffraction limited, i.e., the resolution becomes increasingly independent
from the reference hole diameter, but rather limited by the low-pass
filtering of the detector (green curve in Fig. 1). Such a configuration is
inefficient, as either the interference pattern is not captured up to the
maximum scattering angles that potentially could contribute to the
reconstruction given the small reference hole size or a larger reference
hole could be used increasing the reference wave intensity. In contrast,
FTH systems with an reference Airy disk narrower than the optimal
configuration show a transfer function that does not utilize the in-
formation up to the maximum scattering angle recorded (blue curve in
Fig. 1). Such holograms are overly reference limited. The usable part of
such a hologram within the first zero of pinhole diffraction covers only
a small part of the detector resulting in an inefficient use of the device.
The situation improves by decreasing the FTH system’s NA via placing
the detector further downstream from the specimen. As a result, the
scattering signal is distributed over a larger number of pixels and the
detector’s limited dynamic range is exploited more efficiently which
finally leads to a better signal-to-noise ratio of the reconstructions.

2.4. Focusing by propagation

Another way to deal with negative side lobes of a transmission
function which is strongly reference limited is to recover negative
(high) spatial frequencies. Such an approach would ultimately also
improve spatial resolution of the image reconstruction. The method
presented here exploits the longitudinal shape of the point-spread
function along the beam propagation axis (). For a strongly reference-
limited imaging system as considered here the PSF is dominated by the
near-field diffraction from the reference pinhole. The natural re-
construction plane along z upon Fourier transforming the hologram is
the plane of the object’s exit wave from the integrated mask [1]. The
PSF of a strongly reference-limited FTH system, however, approximates
the transmission function of the reference pinhole, i.e., a circular disk,
and neither coincides with the plane of maximum signal on-axis nor
with the plane of least confusion at d2;/4z4 = 1 (Fig. 2). Defining z = 0
in the mask plane and assuming an infinitely thin mask, the PSF of a
strongly reference-limited FTH system shows a real and a virtual beam
waist which are symmetrically located upstream and downstream of the
mask where the absolute value of the Fresnel number (F = d2;/4z4)
equals unity. The beam waists can, thus, be found at a propagation
distances of dyy,, = +d2¢/44. This is another fundamental difference to
common, diffraction-limited imaging systems where the PSF after fo-
cusing is optimally confined in a single beam waist, i.e., in the imaging
plane [31].

The PSF of a strongly reference-limited FTH system in the mask
plane may, thus, be seen as a defocused image of a more confined PSF
in the beam waist. Therefore, a direct approach to enhance the spatial
resolution is to refocus the reconstruction by free-space propagation
[29,30]. This operation is straightforward for a holographic re-
construction as both the amplitude and the phase information of the
wave field are recovered. In fact, numerical free-space propagation was
previously used to account for the distance between holographic mask
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Fig. 2. Longitudinal shape of the PSF for a strongly reference-limited FTH
system. For each distance dp.p, the PSF is normalized to the maximum at
dprop = 0. The FWHM of the beam is indicated by red lines. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

and object in setups where mask and object were separated from each
other [28,32,33]. To estimate the propagation distance to the beam
waist, the reference pinhole may be regarded as a primitive, single-zone
(N = 1) Fresnel zone plate (FZP). The distance from the mask plane to
the beam waist positions can be interpreted as the FZP’s first-order focal
lengths:

+1
fFZP = ﬁ(dref/z)z

2
idref

a )

Refocusing the reconstruction leads, thus, to a resolution enhancement
by a factor of up to two if the reference pinhole radius is interpreted as
the outermost zone width of the single-zone FZP. The red line in Fig. 2
indicating the full width at half maximum (FWHM) of the reference
beam clearly demonstrates the potential decrease in beam diameter at
first-order focus. Similar to FZPs, the pinhole contains a zero order
which can be removed by high-pass filtering the hologram [23,31]. This
approach can push the resolution limit beyond the reference pinhole
manufacturing capabilities and dispenses of the exact knowledge about
the shape of the reference pinhole. However, the improvements of the
resolution are limited by the diffraction efficiency of the reference
pinhole’s first diffraction order and by the superposition of higher or-
ders [31].

2.5. Deconvolution

In order to use intentionally enlarged references with diameters
much larger than the target resolution, we propose to characterize the
transfer function in the mask-plane reconstruction to restore the re-
solution by a deconvolution method [14,34]. This approach aims to
eliminate the reference-limiting term (¥[p(r)]) in TF(q) (Eq. (3)) and,
thus, allows to exploit all spatial frequencies that where recorded over
the whole detector area Ap(q) to reconstruct the object’s wave field at
diffraction-limited resolution. Due to the frequent zero-crossings of the
transfer function of the coherent FTH imaging system, the application
of a Wiener filter during deconvolution is mandatory [34]. Otherwise
the deconvolution operator would diverge where TF(q) =~ 0.

A one-dimensional illustration of the function of the deconvolution

Ultramicroscopy 214 (2020) 113005

radius (mm)
0 2 4 6 8 10 12

1.0 ! /\ ﬂ

T

-1.01 : = ; ‘

0 122 2 3 4 5
diffraction angle 6 (A/d.)

norm. real part

Fig. 3. One-dimensional illustration of the function of deconvolution and pro-
pagation. The normalized real part (radial average) of the approximated
transfer function from the center of the diffraction pattern before (black), and
after Wiener filtering (purple). The deconvolution is performed by dividing the
recorded hologram by the Wiener filtered transfer function (purple). For com-
parison to the refocusing approach, the normalized real part of the free-space
propagation that leads to an optimally focused reconstruction is given in blue.
The amplitudes inverted by the wave propagation match only the first negative
side lobe of the transfer function whereas amplitudes corresponding to dif-
fraction angles 6 > 2.9A/d,s (dashed line) are not correctly negated by the
refocusing approach. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

is shown in Fig. 3. The real part of the holographic transfer function
approximated by Eq. (6) is shown in black. After applying the Wiener
filter, the zero crossings are converted to singularities (purple). The
deconvolution of the reconstruction is obtained by Fourier transforming
the hologram after division by the Wiener-filtered transfer function. We
note that wave propagation for resolution enhancement has a similar
function as the deconvolution method. The relationship between both
methods can be understood by comparing the transfer function to the
normalized real part of the propagation operator that leads to an op-
timally focused reconstruction (blue). As seen by its sign, the operator
also inverts negative side lobes of the transfer function, however, with
some limitations. While the first order of the holographic transfer
function is negated correctly, the propagation operator does not match
the sign of the transfer function for diffraction angles 0 > 2.9A/d,¢
(marked by dashed line in Fig. 3). In other words, the propagation
negates amplitudes that correspond to a positive side lobe of the
transfer function. This results in an upper boundary for the resolution
enhancement by a factor of 2.9/1.22 ~ 2.4. This figure is similar to the
improvement by a factor of two predicted from the comparison of the
reference aperture with an FZP.

As the deconvolution approach relies on a sufficient knowledge of
the system’s transfer function, we here propose to characterize TF(q) by
a reference test structure that is placed in the integrated mask next to
the object taking advantage of a multiplexed FTH geometry [35]. The
exit waves of the reference test structure and the desired object are both
recorded simultaneously in a single measurement. Suitable reference
test structures to analyze TF(q) are, for instance, sector stars. For a well-
defined circular reference, TF(q) can sufficiently be approximated from
the test structure reconstructed while performing deconvolutions with
varying sizes of r.r in Eq. (6) for the reference far-field E,.dq). The
appropriately scaled Bessel function is found when the deconvolution of
the reference test structure is optimally reproduced, i.e., all sectors are
optimally resolved with correct contrast for the sector star test struc-
ture.

3. Experiment

In a first experiment, all methods proposed above are investigated
by imaging a sector-star test pattern with a strongly reference-limited
FTH system. The test sample for this experiment consists of a silicon-
nitride membrane, coated with a Cr/Au multilayer film on the facet-
side rendering the structure opaque to soft X-rays. A field-of-view de-
fining object hole with 5.25 um in diameter was etched into the gold
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Fig. 4. Scanning electron micrographs (SEM) of test samples. (a) Sample to characterize a strongly reference-limited FTH transfer function using a sector star test
pattern. (b) Sample to characterize a strongly reference-limited FTH transfer function to enhance the resolution of the reconstruction of a diatom test object. The
sector star is seen by SEM through the silicon nitride membrane. The inset shows a SEM view from the opposite side.

layer using a focused-ion beam (FIB). The sector star which consists of
24 sectors and has a diameter of 5 um was produced by electron-beam
induced deposition of a 100 nm thick platinum layer at the object hole
location. Note that this deposition method typically results in a high
carbon content of the Pt layer of more than 80% [33]. The reference
pinhole has a diameter of 350 nm and was milled from the mask side
through all layers.

A second experiment aims to apply a characterized FTH transfer
function to strongly reference-limited reconstruction of a natural test
object. In this experiment, the substrate is again a silicon-nitride
membrane, coated with a Cr/Au multilayer material for the FTH mask.
Similar to the first sample, also this sample consists of a sector-star test
pattern with 24 sectors. In addition to the sector star and the reference
pinhole, the sample additionally contains a fossilized diatom shell as a
natural object. To achieve this, diatomaceous earth was dispersed on
the substrate and a suitable diatom shell was then selected by FIB
milling of a 4um wide object aperture into the mask on the opposite
side of the membrane. Subsequently, the sector star (4 um diameter)
was produced in a second object aperture at a suitable location by
electron-beam-assisted deposition of a 100 nm thick Pt layer. Note that
the platinum was deposited on the membrane side opposite to the
diatom (Fig. 4(b)). The reference pinhole with 300 nm in diameter was
FIB milled through all layers.

The X-ray imaging experiments were carried out at the undulator
beamlines U41-PGM and UE52-SGM of the synchrotron-radiation fa-
cility BESSY II (Berlin, Germany). The samples were illuminated by a
coherent X-ray beam of 400 eV photon energy. The holograms were
recorded by a CCD detector with 2048 x 2048 pixels and a square
pixel shape with 13.5 pm side length which was placed 332 mm
downstream the sample. In order to limit the dynamic range of the
diffraction pattern, the central part of the CCD was masked by a circular
beamstop to block the intense center of the hologram. For the second
sample, the beam block was removed in a second exposure in order to
also record the central part of the hologram. Subsequently both holo-
grams where patched together matching the recorded signal in an
overlap region. We recorded scattering signal up to the almost highest
scattering angles covered by the detector. The potential diffraction-
limited resolution for our detector geometry is 37 nm (half pitch).

The size of the pinholes providing the reference wave was

intentionally chosen to be significantly larger than the achievable dif-
fraction-limited resolution in order to operate in a strongly reference-
limited regime. In this geometry, we are able to directly demonstrate
the effects and methods discussed in the theory part above. Note that
state-of-the-art FIB processing allows to routinely fabricate reference
pinholes with diameters below 50 nm [4,5,7,12].

4. Results and discussion

Our analysis is based on the datasets as presented in Fig. 5. The
hologram of the sector star comprises 30 CCD acquisitions where the
intense central part is blanked out by a beamstop. The hologram of the
diatom sample was assembled from 275 CCD acquisitions with beam-
stop and 1000 acquisition of the central area only without a beamstop.
Afterwards the data was only corrected for the CCD background using
CCD dark images and for intense cosmic-ray imprints by local thresh-
olding. Nevertheless our data still suffers from (i) a spatially slowly
varying background due to temporal drifts of the CCD noise (this was
corrected for in the logarithmic display of the data in Fig. 5, but not in
the image reconstruction), (ii) missing data behind the beamstop and
the wire where it is attached to, (iii) transmission of high-energy ra-
diation from undulator harmonics, and (iv) high CCD noise with respect
to the signal level at high scattering angles. However, holographic
imaging, picking up only the interference between object and reference
waves, is very robust against such experimental shortcomings as we
demonstrate in the reconstructions below. As a result, also the numer-
ical image refinements presented here remain unaffected as they are
based on the holographic reconstruction.

4.1. Reconstruction of the sector star

In Fig. 6, we show the reconstructions (real-part) of the sector star
from the sample shown in Fig. 4(a) and the dataset in Fig. 5(a). We
present the direct holographic reconstruction, i.e., the Fourier inversion
of the hologram, in panel (a) and different post-treatments of it in pa-
nels (b)-(d). For each reconstruction, we calculate the image contrast in
dependence on the feature size based on the intensity contrast between
the sector-star spokes and the gaps in between. The contrast is azi-
muthally averaged over all spokes and normalized to the maximum
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Fig. 5. Soft-X-ray holograms recorded from (a) the sector star sample and (b) the diatom sample. This data was used as basis for the entire analysis in this work. The
holograms are displayed on a logarithmic intensity scale. For display only, a slowly varying background was additionally removed from the data in order to render
the weak scattering at high scattering angles visible. While in (a) the central part of the hologram is blocked by a beamstop, the missing data in (b) was replaced using
a second exposure without beamstop. The insets show the best reconstructions achieved from the holograms in a complex representation where value encodes
magnitude and hue phase (for color representation see Fig. 7). Both reconstructions are based on a deconvolution of the initial FTH image. Reconstruction scalebars

are 1 pm.

value, found at the rim of the sector star where the sectors are thor-
oughly modulated and the contrast ideally saturates. This mean con-
trast as a function of the sector width is given below the reconstruc-
tions. The error bars and the pale colored areas indicate the confidence
interval for the contrast measurement according to the one-fold stan-
dard deviation. Note that this experimentally accessible contrast func-
tion is very similar, but not identical to the transfer function introduced
in the theory part above (Eq. (3)). While the transmission function of
our object is—in the ideal case—a rectangular function in the azimuthal
direction, the transfer function would have to be directly probed by a
Dirac-comb-like object. In order to evaluate the resolution limit
achieved in a particular reconstruction, we define 15.3% image contrast
as the resolution cut-off, similar to the Rayleigh criterion. The resolu-
tion limits determined are also indicated by the colored circles in the
reconstructions.

The application of a central beamstop in the experiment results in
strong high-pass filtering of the reconstructed image. As a consequence,
information on spatially slowly varying features, in particular, the

real part (normalized)

contrast (%)
ca8 g
w

average transmission of the sample is lost. In our configuration, the cut-
off corresponds to real-space distances of = 1 um and is, thus, still
larger than the largest features found at the rim of the sector star. For
this reason, the contrast functions in Fig. 6 are still unaffected by the
beamstop. However, the Fourier inversion of the high-pass filtered data
only yields the deviation of the transmission (given by the real part of
the reconstruction) from its average. In particular, the filtering results
in a real part with positive and negative values inside the FOV. Outside
the FOV, where the radiation is blocked by the holography mask, the
real part is still almost zero.

For the untreated reconstruction (Fig. 6(a)), the contrast decreases
for smaller periods and vanishes for the spatial period that matches the
reference pinhole diameter, i.e., we find the zero crossing at 178 nm
half period in agreement with the nominal reference pinhole radius of
175 nm. Spatial periods between 101 nm and 178 nm appear to be
contrast-inverted and the resolution limit for 15.3% image contrast is
found for a feature width (half period) of 218 nm. The effective re-
solution in this geometry is, thus, clearly limited by the size of the
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Fig. 6. Reconstruction of a sector star test pattern, (a) untreated reconstruction, (b) low-pass filtered reconstruction, (c) numerically refocused reconstruction (wave
propagation), (d) reconstruction after deconvolution with an approximated FTH transfer function. The contrast in dependence on the spatial half period for each
reconstruction is given below. The resolution cut-off is indicated for 15.3% image contrast. The confidence intervals according to the one-fold standard deviation of
the contrast in the different sectors are indicated by error bars and by the pale-colored areas.
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Fig. 7. Demonstration of resolution-enhanced imaging of a diatom as a natural test object (complex representation where value encodes amplitude and hue phase).
(a) FTH reconstruction without further treatment. (b) Reconstruction after free-space propagation by 12 um along the beam axis. (c) Reconstruction after decon-
volution with Wiener filtering using a transfer function retrieved from a sector star imaged in parallel (not shown).

reference. We also find the imaging artifact from negative bands of the
transmission function as predicted in our theory part above. In the
following we will apply the numerical treatments suggested to cope
with this artifact.

Fig. 6 (b) shows the reconstruction after applying a low-pass filter
that deletes all frequencies outside the first zero crossing of the holo-
graphic transfer function TF(q). The inverse contrast artifact is now
removed whereas the resolution is not significantly affected. Fig. 6(c)
shows the reconstruction after propagation of the reconstructed object
wave 12 um along the beam axis, leading to an improvement of the
contrast in the center of the sector star test pattern. The propagation
distance is manually determined by bringing the smallest features into
focus. The experimental propagation distance found is close to the
nominal position of the first-order focus at 9.9 um distance according to
Eq. (7). We attribute the difference to wave-guide effects in the re-
ference pinhole channel [17], which are neglected in our derivation of
Eq. (7). After propagation, the center of the sector star is now correctly
reproduced and the contrast inversion is resolved. After numeric re-
focusing, we achieve a resolution (half period) of 210 nm. This result is
only marginally better than the resolution found for the low-pass fil-
tered image. In particular, the experiment cannot confirm the im-
provement by a factor of two as predicted. This discrepancy finds its
origin in the faint contrast of the reconstructed structures at half-pitch
sizes of around 100 nm. As the propagation operator is always unity in
Fourier space, it does not amplify these structures and their contrast
remains below the threshold of 15.3% for the resolution cut-off.
Nevertheless, the comparison between Fig. 6(a)—(c) clearly demon-
strates that the numerically straightforward free-space propagation of
the FTH reconstruction not only removes artifacts, but also unveils
object details below the resolution threshold given by the reference
wave source.

Fig. 6 (d) shows the sector star after Wiener deconvolution [30]
using the approximated FTH transfer function. Assuming our reference
pinhole has a circular shape, we found the best approximation of TF(q)
as described above for a radius of the first zero equal to 2.97 mm on the
detector. Considering our scattering geometry, this radius corresponds
to a reference pinhole radius of 347 nm matching the nominal pinhole
diameter of 350 nm from the manufacturing process remarkably well.
After deconvolution, the sector star in the reconstruction is fully re-
produced with high contrast over a wide band of spatial frequencies.

In order to reduce typical deconvolution artifacts caused by the
sharp boundaries of the FOV [36], we smoothed the edge of the object
pinhole in the reconstruction (Gaussian kernel with standard deviation
130 nm). While this procedure drastically reduces artifacts in the center
of the FOV, the treatment sacrifices the outer region of the FOV. In the
final reconstruction, we, therefore, replaced the rim area affected by
smoothing with an image retrieved from a deconvolution process
without any edge treatment. This method results in an inner region of
the reconstruction that is free of boundary artifacts. The remaining

boundary artifacts in the periphery of the FOV might be treatable with
more sophisticated methods [36]. After deconvolution, the center of the
sector star is clearly resolved. The image resolution even comes below
the smallest features provided by the sector-star test structure. The
resolution cut-off is found for feature sizes of 67 nm (half pitch)
reaching almost diffraction-limited resolution and surpassing the re-
solution-limit achievable by wave-propagation method (d,.;/4 = 88 nm
(half pitch)). Since small spatial periods in the sector-star center
strongly deviate from the ideal gap-to-period ratio of 0.5 (see Fig. 4(a)),
the decrease in contrast for spatial half periods below 100 nm is not
necessarily caused by the FTH imaging system, but the test sample.
Consequentially, the resolution given is to be understood as an upper
limit.

The optimized reconstruction from Fig. 6(d) is reproduced as an
inset in Fig. 5(a) in a representation encoding both the magnitude as
brightness and phase and hue. To realize this representation, an arti-
ficial offset was added to the reconstruction that compensates for the
missing intensity blocked by the beamstop. This representation de-
monstrates that the sector star is also imaged in the phase of the re-
construction (phase difference between spokes and vacuum is = 1
rad). However, the phase is subject to modulations again caused by the
beamstop.

4.2. Reconstruction of the diatom sample

In Fig. 7, we show the reconstruction of the diatom object, again
using different numerical treatments. Panel (a) shows the reconstruc-
tion of the diatom directly after Fourier inversion. The holes in the shell
of the diatom are insufficiently resolved as they appear darker than the
surrounding absorbing diatom. This finding again points to imaging
artifacts because the hologram recorded is strongly reference limited.
Fig. 7(b) shows the same reconstruction after numerically propagating
the wave field by 12 ym. The transmission through the small holes is
now reproduced correctly and the diatom appears more focused. In
Fig. 7(c), we present the reconstruction after deconvolution using TF(q)
approximated by Eq. (6). The numerical reference pinhole diameter as
the only free deconvolution parameter was manually tuned utilizing the
known sector star test pattern produced on the same sample and imaged
simultaneously [35]. This tuning is as straight forward as adjusting a
conventional focus. Typical deconvolution artifacts were treated simi-
larly to the first experiment. Both the resolution and the contrast of the
image improve significantly. The improvement reveals object details
that have been hidden in the FTH reconstructions in (a) and (b). This
demonstrates that information up to the diffraction limit can be ex-
tracted even from holograms recorded with a reference beam origi-
nating from an aperture which is much larger than this limit.

This finding directly leads to the idea of deliberately using a re-
ference pinhole larger than the resolution intended for the experiment.
This choice has two advantages: First, the more intense reference wave
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coherently amplifies the scattering from the object which improves the
signal against the detector’s background noise. Second, a larger re-
ference aperture can be produced with much better defined shape (e.g.
circular) than apertures close to the resolution limit of the FIB and also
X-ray wave-guiding effects are smaller for larger pinhole openings. This
results in a better estimate for the reference exit wave which is utilized
for the deconvolution. In addition, the combination of reference aper-
tures with different diameters can be used to mutually fill the gaps in
the contrast function originating from the zero-crossings of the transfer
function.

While this study focuses on spherical pinholes as the most basic
source for the reference wave, the theoretical and experimental findings
can be transferred to extended reference objects, too. This is most
straightforward for reconstructions from pinhole arrays which share the
same properties as single-hole reconstructions. However, deconvolution
approaches are also applicable to zone-plate-based holograms and the
HERALDO method if a suitable estimate for the transfer function is
used. Also in this case, the combination of the actual unknown object
with well-defined test structures as proposed here is a promising way to
directly evaluate the result in the experiment.

Recently, progress was reported also on numerical post-processing
of holography data based on iterative phase-retrieval algorithms [17].
In this experiment imaging magnetic domains with extreme UV radia-
tion, it is impressively demonstrated that high-contrast, diffraction-
limited images can be obtained from reference-limited holograms if a
high-quality, accurate and complete diffraction pattern is available.
However such an input is experimentally challenging to achieve, in
particular, with the presently available soft-X-ray detector technology
having very limited dynamic range and typically low read-out speeds.
Experiments with soft X-rays regime using similar samples could show
no or only small improvements by the CDI refinement [24,27]. In
particular, intentionally large reference apertures may even cause
failing of the phase retrieval [27]. In contrast, the numerical methods
presented here are also robust against missing information due to a
central beamstop (Fig. 6(d)), high detector and photon noise at large
scattering angles and contributions from higher harmonics of the fun-
damental wavelength which are typically present in undulator radia-
tion. As our numerical methods are tuned by a single parameter (mainly
reflecting the reference pinhole diameter), they can be easily integrated
into instant image analysis.

5. Conclusion

In this work, we analyzed the interplay between detector size and
the source size of the reference beam, which both can limit the spatial
resolution achieved in an X-ray FTH experiment. We found that both
effects should ideally be matched in a way that the Airy disk of the
reference beam’s far field exactly covers the area of the detector. If this
geometry rule is experimentally followed and scattering signal with
sufficient SNR is collected, diffraction-limited resolution of the FTH
reconstructions can be expected.

In the main part of the work, we discussed the experimentally im-
portant case when the resolution is mainly limited by the reference
beam while the diffraction limit would allow for better resolution. In
this case, the hologram reconstruction shows significant imaging arti-
facts at small features due to negative side lobes of the FTH transfer
function. We introduce three methods to circumvent these artifacts and
improve the reconstructions. All methods rely on numerical post-pro-
cessing of the reconstruction. We demonstrate that refocusing via wave-
propagation as well as deconvolution are able to even retrieve spatial
information beyond the limit given by the reference beam up to the
diffraction limit. This result can even make the intentional application
of reference pinholes larger than the spatial resolution required at-
tractive. The use of large pinhole references allows enhancing the image
contrast in the reconstruction for low photon number applications such
as single-shot experiments at FELs [18,19] or imaging at laboratory
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sources [11,15-17]. In this case, the intensified reference wave co-
herently amplifies the object wave and, thus, increases the signal-to-
noise ratio of the hologram and its reconstruction.
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