17 research outputs found

    Genome and Plasmid Sequences of Escherichia coli KV7, an Extended-Spectrum β-Lactamase Isolate Derived from Feces of a Healthy Pig.

    Get PDF
    We present single-contig assemblies for Escherichia coli strain KV7 (serotype O27, phylogenetic group D) and its six plasmids, isolated from a healthy pig, as determined by PacBio RS II and Illumina MiSeq sequencing. The chromosome of 4,997,475 bp and G+C content of 50.75% harbored 4,540 protein-encoding genes

    Motility defects in Campylobacter jejuni defined gene deletion mutants caused by second-site mutations.

    Get PDF
    Genetic variation due to mutation and phase variation has a considerable impact on the commensal and pathogenic behaviours of Campylobacter jejuni. In this study, we provide an example of how second-site mutations can interfere with gene function analysis in C. jejuni. Deletion of the flagellin B gene (flaB) in C. jejuni M1 resulted in mutant clones with inconsistent motility phenotypes. From the flaB mutant clones picked for further analysis, two were motile, one showed intermediate motility and two displayed severely attenuated motility. To determine the molecular basis of this differential motility, a genome resequencing approach was used. Second-site mutations were identified in the severely attenuated and intermediate motility flaB mutant clones: a TA-dinucleotide deletion in fliW and an A deletion in flgD, respectively. Restoration of WT fliW, using a newly developed genetic complementation system, confirmed that the second-site fliW mutation caused the motility defect as opposed to the primary deletion of flaB. This study highlights the importance of (i) screening multiple defined gene deletion mutant clones, (ii) genetic complementation of the gene deletion and ideally (iii) screening for second-site mutations that might interfere with the pathways/mechanisms under study.This work was funded by BBSRC grant RG66581.This is the final version of the article. It was first available from Society for General Microbiology via http://dx.doi.org/10.1099/mic.0.00018

    The complete mitochondrial genome of Epomophorus gambianus (Chiroptera: Pteropodidae) and its phylogenetic analysis.

    Get PDF
    The Gambian epauletted fruit bat, Epomophorus gambianus, is widely distributed across sub-Saharan Africa. Its assembled and annotated mitochondrial genome (GenBank accession no. KT963027) is 16,702 bases in length, containing 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two non-coding regions: the control region (D-loop) and the origin of light-strand replication (OL). The average base composition is 32.2% A; 27.6% C; 14% G; and 26.1% T. The mitogenome presented a structural composition greatly conserved between members of the Pteropodidae family.This is the final version of the article. It first appeared from Taylor & Francis via https://doi.org/10.1080/23802359.2016.118199

    Phylogenetic analyses and antimicrobial resistance profiles of Campylobacter spp. from diarrhoeal patients and chickens in Botswana.

    Get PDF
    Campylobacter spp. are a leading cause of bacterial enteritis worldwide, including countries in Africa, and have been identified by the World Health Organisation (WHO) as one of the high priority antimicrobial resistant pathogens. However, at present there is little knowledge on the prevalence, molecular epidemiology or antimicrobial susceptibility of Campylobacter spp. isolates in Botswana, both in patients and in the zoonotic context. Some data indicate that ~14% of diarrhoeal disease cases in a paediatric setting can be ascribed to Campylobacter spp., urging the need for the magnitude of Campylobacter-associated diarrhoea to be established. In this survey, we have characterised the genomic diversity of Campylobacter spp. circulating in Botswana isolated from cases of diarrhoeal disease in humans (n = 20) and from those that colonised commercial broiler (n = 35) and free-range (n = 35) chickens. Phylogeny showed that the Campylobacter spp. isolated from the different poultry and human sources were highly related, suggesting that zoonotic transmission has likely occurred. We found that for Campylobacter spp. isolated from humans, broilers and free-range chickens, 52% was positive for tetO, 47% for gyrA-T86I, 72% for blaOXA-61, with 27% carrying all three resistance determinants. No 23S mutations conferring macrolide resistance were detected in this survey. In summary, our study provides insight into Campylobacter spp. in poultry reservoirs and in diarrhoeal patients, and the relevance for treatment regimens in Botswana

    Comparative analysis and supragenome modeling of twelve Moraxella catarrhalis clinical isolates

    Get PDF
    Contains fulltext : 97744.pdf (publisher's version ) (Open Access)BACKGROUND: M. catarrhalis is a gram-negative, gamma-proteobacterium and an opportunistic human pathogen associated with otitis media (OM) and exacerbations of chronic obstructive pulmonary disease (COPD). With direct and indirect costs for treating these conditions annually exceeding $33 billion in the United States alone, and nearly ubiquitous resistance to beta-lactam antibiotics among M. catarrhalis clinical isolates, a greater understanding of this pathogen's genome and its variability among isolates is needed. RESULTS: The genomic sequences of ten geographically and phenotypically diverse clinical isolates of M. catarrhalis were determined and analyzed together with two publicly available genomes. These twelve genomes were subjected to detailed comparative and predictive analyses aimed at characterizing the supragenome and understanding the metabolic and pathogenic potential of this species. A total of 2383 gene clusters were identified, of which 1755 are core with the remaining 628 clusters unevenly distributed among the twelve isolates. These findings are consistent with the distributed genome hypothesis (DGH), which posits that the species genome possesses a far greater number of genes than any single isolate. Multiple and pair-wise whole genome alignments highlight limited chromosomal re-arrangement. CONCLUSIONS: M. catarrhalis gene content and chromosomal organization data, although supportive of the DGH, show modest overall genic diversity. These findings are in stark contrast with the reported heterogeneity of the species as a whole, as wells as to other bacterial pathogens mediating OM and COPD, providing important insight into M. catarrhalis pathogenesis that will aid in the development of novel therapeutic regimens
    corecore