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Abstract

Campylobacter spp. are a leading cause of bacterial enteritis worldwide, including countries

in Africa, and have been identified by the World Health Organisation (WHO) as one of the

high priority antimicrobial resistant pathogens. However, at present there is little knowledge

on the prevalence, molecular epidemiology or antimicrobial susceptibility of Campylobacter

spp. isolates in Botswana, both in patients and in the zoonotic context. Some data indicate

that ~14% of diarrhoeal disease cases in a paediatric setting can be ascribed to Campylo-

bacter spp., urging the need for the magnitude of Campylobacter-associated diarrhoea to

be established. In this survey, we have characterised the genomic diversity of Campylobac-

ter spp. circulating in Botswana isolated from cases of diarrhoeal disease in humans (n =

20) and from those that colonised commercial broiler (n = 35) and free-range (n = 35) chick-

ens. Phylogeny showed that the Campylobacter spp. isolated from the different poultry and

human sources were highly related, suggesting that zoonotic transmission has likely

occurred. We found that for Campylobacter spp. isolated from humans, broilers and free-

range chickens, 52% was positive for tetO, 47% for gyrA-T86I, 72% for blaOXA-61, with 27%

carrying all three resistance determinants. No 23S mutations conferring macrolide resis-

tance were detected in this survey. In summary, our study provides insight into Campylobac-

ter spp. in poultry reservoirs and in diarrhoeal patients, and the relevance for treatment

regimens in Botswana.
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Introduction

Foodborne zoonoses, especially diarrhoeal diseases, are an important cause of morbidity and

mortality worldwide, but the epidemiology of diarrhoeal disease in Botswana is poorly under-

stood [1]. Cryptosporidium, Salmonella, Shigella, Rotavirus and Adenovirus have been associ-

ated with past gastroenteritis outbreaks [1]. HIV is endemic in Botswana; according to

UNAIDS HIV AIDS estimates in 2016, 350,000 people in Botswana are living with HIV, with

22.2% adult HIV prevalence [2]. Diarrheal disease is a major cause of mortality and morbidity

among HIV-infected patients and HIV is a predisposing factor to diarrhoeal disease and asso-

ciated complications [1].

Infection by Campylobacter jejuni is considered to be the most prevalent cause of bacterial

diarrhoeal disease worldwide, responsible for ~500 million cases of gastroenteritis per year [3].

The transmission chain of Campylobacter spp. is not completely defined but chickens are con-

sidered to be the major vehicle for transmission to humans. Additional sources of infection are

likely to include red meat, unpasteurised milk and contaminated water. In developing coun-

tries, Campylobacter spp. infection is common in early childhood owing to poor sanitation and

close human contact with animals [4]. With age, infection rates decline, fewer infections are

associated with diarrhoea, and the duration and magnitude of convalescent excretion of Cam-
pylobacter spp. is reduced [5]. Although the severity of Campylobacter spp. infection in adults

is different between developed and developing countries, the clinical signs of infection in

adults in developing countries appear to be similar to those in developed countries [6]. Acute

signs range from protracted watery diarrhoea to bloody diarrhoea with fever, abdominal

cramps, and the presence of faecal leukocytes [4, 7]. Although the vast majority of cases are

self-limiting, there is emerging data in developing countries that even very common ‘asymp-

tomatic’ infections (those without diarrhoea) is associated with reduced linear growth (low

height for age) [8].

Limited studies have been conducted in developing countries that report on Campylobacter
spp. in both humans and animals, in particular genotypic information [9]. One study carried

out at the two referral hospitals in Botswana found that 14% of children admitted with acute

gastroenteritis had Campylobacter spp. detected in their stool [10].

Most Campylobacter spp. infections are self-limiting and treatment is usually supportive.

However, effective antimicrobial therapy is critical for people with severe or prolonged campy-

lobacteriosis, for the elderly, for the young or for the immunocompromised [9, 11, 12]. The

development of resistance by the bacterium obviously limits treatment options in humans and

other animals [11]. A recent study of Campylobacter spp. in the private health care sector in

South Africa found a high prevalence of resistance to the fluoroquinolones, macrolides and tet-

racycline, which are drugs in the first-line treatment of C. jejuni and C. coli [9]. In recent years,

isolates from both developed and developing countries have shown resistance to several anti-

microbials, including fluoroquinolones, tetracyclines, beta-lactams, aminoglycosides and

macrolides [7, 9, 11, 13], which are the most frequently used antimicrobials for the treatment

of campylobacteriosis [6, 7, 9, 11–14]. This has led the World Health Organisation in 2017 to

list Campylobacter spp. as one of the six high priority antimicrobial resistant pathogens [15].

Antimicrobial usage in both animal agriculture and human medicine can influence the devel-

opment of antibiotic-resistance in Campylobacter spp. [13]. It is thought that the unrestrained

use of antimicrobials in developing countries, in particular, has contributed to increased anti-

microbial resistance in Campylobacter spp. [6, 7, 11]. In some countries, antimicrobials are still

used as growth promoters as opposed to therapeutic agents [11]. As a zoonotic pathogen, anti-

microbial-resistant isolates of Campylobacter spp. can be transferred to humans via contami-

nated food, water or milk. The use of fluoroquinolones in food animals, in particular chickens,
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has been associated with increases in resistant Campylobacter spp. causing disease in humans

[16]. However, little is understood regarding the potential contribution of this source of anti-

microbial resistance in the African context.

Genotypic information about Campylobacter spp. in developing countries is lacking [17].

Currently there are no available data on the prevalence, molecular epidemiology or antimicro-

bial susceptibility of Campylobacter spp. isolates in Botswana, neither in patients nor in poultry

reservoirs. As such, this is the first survey conducted in Botswana with the aim to characterise

Campylobacter spp. isolated from diarrhoeal patients, and from free-range and broiler chick-

ens to determine the genetic diversity and the presence of antimicrobial resistance genes.

Results and discussion

Diversity of Campylobacter spp.

Campylobacter spp. were isolated from diarrhoeal paediatric patients admitted to the Princess

Marina Hospital in Gaborone, Botswana, and from caecal samples collected from commercial

broiler and free-range chickens. The chickens were purchased from various poultry farms

within the Gaborone catchment area, which is located close to the border with South Africa.

Chickens were obtained from five sites with commercial broilers and eight sites with free-

range chickens.

Genomes were sequenced using Illumina HiSeq or MiSeq technologies for 20 Campylobac-
ter spp. isolates from human diarrhoeal patients and 70 isolates from chickens, of which 35

were from commercial broilers and 35 were from free-range chickens. To assess which Cam-
pylobacter species each isolate belonged to, an initial comparative genome analysis was per-

formed in by pairwise average nucleotide identity (ANI) BLAST analysis in JSpeciesWS [18]

using the generally accepted ANI species cut-off of 94% [19] (S1 Table). Human and free-

range chicken isolates were predominantly C. jejuni, with 19 human isolates being C. jejuni
(95%) and one being C. coli (5%), while 29 (82.8%) free-range chicken isolates were C. jejuni
and 6 (17.1%) were C. coli. Out of the 35 commercial broiler isolates, 14 (40.0%) were C. jejuni
and 21 (60.0%) were C. coli (S1 Table).

Mutilocus sequence typing (MLST) identified 19 sequence-types (STs) for C. jejuni and 7

for C. coli (S1 Table). Two novel STs were identified for C. jejuni; ST9024 and ST9027, which

both belong to clonal complex ST354. Three novel STs were found for C. coli; ST9025 (clonal

complex ST1150), and ST9026 and ST9028 that both belong to clonal complex ST828.

Noteworthy, 24 out of 28 C. coli isolates belonged to clonal complex ST2828 (S1 Table),

indicating that, based on MLST, the C. coli isolates are genetically more conserved. In recent

Catalonian (north-east Spain) and Italian studies, the predominant clonal complex of C. coli
isolates was also ST828 [20, 21]

Phylogenetic analyses of Campylobacter spp.

Phylogeny was built separately for C. jejuni (Fig 1) and C. coli (Fig 2) based on core genome

alignments, which include 1107 or 1197 genes respectively. In addition, phylogeny was also

assessed using extracted single nucleotide polymorphisms (SNPs) derived from a reference-

based alignment; C. jejuni NCTC11168 [22] was used as a reference (S1 Fig and S2 Fig). Clus-

tering of isolates in both core genome- and SNP-based phylogenies was identical, indicating

that both methods successfully extracted the existing phylogenetic signal. It is noteworthy that

MLST seems to be an effective indication of related lineages as isolates belonging to the same

ST clustered together. Each clade, as defined by ST, appears to contain very little genetic diver-

sity within the clade compared to the differences between clades. These results suggest that the

employed methods provide a clear indication of the relatedness of the isolates. However, due
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to the genetic promiscuity of Campylobacter spp., the trees are unlikely to represent the true

phylogenies.

Our data show that isolates from across the phylogenies of each Campylobacter spp. are

present in broilers, free-range chickens and humans. As anticipated, strains from the same

sample set/location were closely related. However, there is also evidence of (closely) related

strains in different locations, suggesting that geographic spread may have occurred. Regarding

the possibility of geographic spread of C. jejuni, we observed that isolate S26 from a free-range

chicken in Lentsweletau was present in a cluster with isolates from free-range chickens from

Boatle that were isolated six months previously. S3 from a free-range chicken in Mochudi was

present in a cluster with isolates from free-range chickens from Ramapatle isolated fourteen

months later. S28 and S29 from free-range chickens in Lentsweletau are present in a cluster

with isolates from free-range chickens from Kopong isolated one month later. S50, S51 and

Fig 1. Phylogeny and AMR profile of C. jejuni isolates from this study. Core genome maximum likelihood phylogeny of C. jejuni isolates

visualised in the interactive Tree of life tool (iTol) [23]. The tree was rooted on isolate 2445 to facilitate comparison with the SNP-based phylogeny

shown in S1 Fig. Clustering of isolates was found to be in accordance between core genome and SNP-based phylogenies (S1 Fig). Clustering of

isolates belonging to the same ST was consistent. Shown for each isolate are: isolate identifier, the geographic location of isolation, presence of AMR

determinants and ST.

https://doi.org/10.1371/journal.pone.0194481.g001
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S55 from free-range chickens in Gabane are present in a cluster with isolates from free-range

chickens from Gaborone—block 9 (S64) isolated ~2 weeks later and Ramapatle (S47) isolated

~1 week previous. S4, S10 and S27 from free-range chickens, each from a different geographi-

cal location and from a different sampling time (spanning seven months) form a cluster (S1

Table, Fig 1 and S1 Fig).

Regarding the possibility of geographic spread of C. coli, we observed that isolate B39 from

a broiler chicken in Gaborone—Old Naledi was present in a cluster with isolates from broiler

chickens in Ramotswa (B21) isolated fifteen months previously and Mmatseta (B54) isolated

three months later. Isolates B23, B24 and B27 from broiler chickens in Ramotswa were present

in a cluster with isolates from broiler chickens in Matebele (B9, B10 and B11) isolated four

months later. Isolates B30, B31 and B32 from broiler chickens in Metsimaswane were present

in a cluster with isolates from broiler chickens in Ramotswa (B25) and Metsimaswane (B29)

isolated on the same day and Gaborone—Old Naledi (B37) isolated fifteen months later. C. coli
B15 isolated from a broiler in Gaborone–North, ST9025, a novel ST belonging to clonal com-

plex ST1140, is distant to the other C. coli isolates in this study (Fig 2 and S2 Fig). Pair-wise

ANI analyses with the other C. coli isolates in our study confirmed that B15 belongs to the C.

coli species, i.e. all were>94% ANI, which is generally considered the species cut-off value

[19].

We observed limited mixing of strains between broiler and free-range chickens, as evi-

denced by most branches of the phylogeny only having strains from a single host, with the

exception of C. coli isolates S11 from a free-range chicken in Ramotswa, S66 from a free-range

chicken in Gaborone Block 9 isolated nineteen months later and S74 from a free-range chicken

in Notwane isolated eighteen months later were present in a cluster with C. coli isolates from a

broiler chicken B72 isolated nineteen months later from Kumakwane and a human isolate

2511 from Tlokweng (date of isolation not recorded, but before the isolates from the chickens

were collected) (S1 Table, Fig 1 and Fig 2).

For C. jejuni we observed human isolates that were highly related to chicken isolates. This

included i) human isolate 2144 from Gaborone and S65 isolated from a free-range chicken in

Gaborone Block 9, ii) human isolate 2162 (Gaborone) is related to broiler isolates B13 and B14

from Gaborone North, iii) human isolate 2521 is related to broiler isolates B60, B62, B64, B65,

B68 and B70 (Fig 1 and S1 Fig).

Comparative analyses of Campylobacter spp. from Botswana with other

African isolates

The distribution of Campylobacter spp. isolates from Botswana was analysed with other Afri-

can isolates using multi locus sequence type (MLST) allelic profiles available from the

PubMLST database [24] (accessed in January 2017). Minimum spanning trees generated and

visualised in GrapeTree [25] were used to assess the phylogenetic relatedness amongst African

isolates; trees were built separately for C. jejuni (Fig 3) and C. coli (Fig 4) isolates. STs repre-

sented by Botswanan isolates predominantly comprised isolates from Botswana only, with the

exception of i) C. jejuni ST1932 that comprised 6 Nigerian and 1 Botswanan isolate, ii) C. jejuni
ST52 comprised 4 isolates from Senegal and 3 isolates from Botswana, iii) C. coli ST3241 with

3 isolates from Botswana and 1 from Egypt. In line with the dispersed distribution of African

C. jejuni and C. coli isolates across the MLST-based tree, Botswanan Campylobacter spp. iso-

lates were also widely distributed across the tree (Fig 3 and Fig 4). Several C. jejuni STs are

located at the outside of the tree, e.g. ST137 (human isolate 2556) and ST583 (human isolate

2162, and broiler isolates B13 and B14) that belong to clonal complex ST45, and the clonal

complex ST21 isolates that belong to ST19, ST883 and ST5649 that comprises human, free-

Campylobacter spp. phylogeny in Botswana
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range and broiler isolates (S1 Table and Fig 3). Some of the commercial broiler C. coli isolates

appear to be more distantly related to other African C. coli isolates, i.e. B15 (ST9025) and
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isolates belonging to ST9028 (B25, B29, B30, B31 and B27) (S1 Table and Fig 4). The data high-

light the diversity of Campylobacter spp. in Botswana and indicate both local and global strains,

confirming previous MLST studies with C. jejuni and C. coli isolates from poultry, cattle and

humans in Nigeria [17].

Antimicrobial resistance profiles derived from whole genome sequence

data

Fluoroquinolones, tetracyclines, beta-lactams, aminoglycosides and macrolides are the most

frequently used antimicrobials for the treatment of campylobacteriosis [6, 7, 9, 11–14]. In

Campylobacter spp., as in other Gram-negative bacteria, the main mechanism of fluoroquino-

lone resistance is chromosomally mediated through mutation of gyrA by alteration of codon

86 from threonine to isoleucine [6]. Campylobacter spp. carrying the Thr-86-Ile change in the

GyrA subunit of DNA gyrase can persist in the absence of antimicrobial selection pressure

[11]. In Campylobacter spp. resistance to tetracycline is primarily mediated by a ribosomal pro-

tection protein (tetO) that is transferred as a plasmid-encoded gene or on the chromosome

where it is not self-mobile [6, 9, 14]. Resistance to ampicillin and other beta-lactams is widely

reported among Campylobacter spp. isolated from humans and poultry [26, 27]. A significant

knowledge gap still exists concerning the molecular basis of beta-lactam resistance in Campylo-
bacter spp. [28]. Resistance to beta-lactams in Campylobacter spp. can be mediated by OXA-61

beta-lactamase, which is encoded by the blaOXA-61 gene [29], but other beta-lactamases also

exist [26]. Aminoglycoside (gentamicin) resistance occurs through the presence of genes

including aph(2”)-IF, aac/aphD, aph(2”)-Ig and aacA4 [30]. High-level macrolide resistance is

mediated through mutation of the 23S rRNA [6].

We performed an in silico assessment for mutations conferring antimicrobial resistance

and for the presence of antimicrobial resistance genes. For both C. jejuni and C. coli isolates

there was a noticeable presence of tetO (52%), gyrA-T86I (47%) and blaOXA-61 (72%) (Fig 1, Fig

2, Table 1 and S1 Table). We found no evidence of other antimicrobial resistance genes (as

described in Materials and Methods). In comparison, a recent WGS-based study of 16 Catalo-

nian (north-east Spain) broiler Campylobacter spp. isolates (12 C. jejuni and 4 C. coli) revealed

higher prevalence of tetO (81%) and gyrA-T86I (100%) [20].

In this study, mutation of gyrAwas limited to T86I, confirming that this is the most com-

mon gyrAmutation. This is also in line with studies conducted in Portugal, Catalonia and

Poland in which the only detected gyrAmutation was T86I [20, 31, 32].

Mutations of the 23S rRNA gene that confer macrolide resistance were not detected in the

Botswanan Campylobacter spp. isolates reported in this study, indicating that prevalence of

macrolide resistance is low in Botswana. This is in line with a Polish study, which detected the

A2075G 23S rRNA mutation only in 8 out of 802 poultry isolates [32]. However, a Catalonian

study found the A2075G 23S rRNA mutation in 3 out of 4 tested C. coli isolates but not in the

C. jejuni isolates [20], whereas an Italian study observed the A2075G 23S rRNA mutation in 49

out of 197 tested Campylobacter spp. isolates [21].

We found that tetO was more prevalent in C. coli (24/28; 85.7%) than C. jejuni (23/62;

37.1%) (P = 0.0003). Also, gyrA-T86I was more prevalent in C. coli (26/28; 92.9%) than C.

jejuni (17/62; 27.4%) (P = 6.93e-08) (Table 1). Our analyses showed that tetO was more preva-

lent in Campylobacter spp. isolated from broilers than from humans (P = 0.0021) (Table 1).

nucleotide differences between STs is depicted at the branches. If STs differ by more than 2 nucleotides, branches are truncated (dashed lines). More

details can be found in S1 Table and in the text.

https://doi.org/10.1371/journal.pone.0194481.g004
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We observed that the gyrA-T86I mutation was more prevalent in Campylobacter spp. isolated

from broilers than from free-range chickens (P = 0.0082) (Table 1). Also, we found that

blaOXA-61 was widely distributed in C. jejuni 43/62 (69.4%) and C. coli 22/28 (78.6%) (Table 1).

This is in line with a survey conducted in the United Kingdom, in which 52% of poultry associ-

ated Campylobacter spp. isolates were ampicillin-resistant, of which 92% carried blaOXA-61
[26].

C. coli isolates had higher numbers of individual antimicrobial resistance genes, hence they

also had a higher proportion of combinations of resistance genes. All three resistance genes i.e.

tetO, gyrA-T86I and blaOXA-61 were present in 5/62 (8.1%) of C. jejuni isolates and 19/28

(67.9%) of C. coli isolates (Table 1). This finding supports previous studies that have suggested

that C. coli has increased resistance due to exposure to a larger number of antimicrobial agents

compared to C. jejuni [12, 14]. None of the C. coli isolates were negative for any of the antimi-

crobial resistance genes 0/28 (0%), while 8/62 (12.9%) of the C. jejuni isolates were negative

(Table 1). Interestingly, all six C. coli isolates from the free-range birds contained all three resis-

tance genes.

Conclusion

Here we report on the genomic diversity of circulating Campylobacter spp. causing diarrhoeal

disease in humans and of colonised chickens in Botswana. Phylogeny showed that the Cam-
pylobacter spp. isolated from the different poultry and human sources were highly related, sug-

gesting that zoonotic transmission is likely.

In a large proportion of Campylobacter spp. isolated from humans, broilers and free-range

chickens in this study we detected tetO (52%), gyrA-T86I (47%) and blaOXA-61 (72%) genes.

Our study has identified isolates carrying multiple drug resistance genes, i.e. 27% of the isolates

carried all three above mentioned resistance determinants. The C. coli isolates analysed in our

study had a higher prevalence of the individual antimicrobial resistance genes when compared

Table 1. Frequency of antimicrobial resistance genes (tetO, gyrA-T86I and blaOXA-61) in C. jejuni and C. coli from broiler, free-range chickens and human clinical

isolates.

C. jejuni Broiler Free range Human Total

blaOXA-61 8/14 (57.1%) 20/29 (68.9%) 15/19 (78.9%) 43/62 (69.4%)

tetO 8/14 (57.1%) 11/29 (37.9%) 4/19 (21%) 23/62 (37.1%)

gyrA-T86I 5/14 (35.7%) 3/29 (10.3%) 9/19 (47.4%) 17/62 (27.4%)

blaOXA-61 + tetO 3/14 (21.4%) 11/20 (37.9%) 3/19 (15.8%) 17/62 (27.4%)

blaOXA-61 + gyrA-T86I 5/14 (35.7%) 0/29 (0%) 6/19 (31.6%) 11/62 (17.7%)

tetO + gyrA-T86I 3/14 (21.4%) 0/29 (0%) 3/19 (15.8%) 6/62 (9.7%)

blaOXA-61 + tetO + gyrA-T86I 3/14 (21.4%) 0/29 (0%) 2/19 (10.5%) 5/62 (8.1%)

None 1/14 (7.1%) 6/29 (20.7%) 1/19 (5.3%) 8/62 (12.9%)

C. coli Broiler Free range Human Total

blaOXA-61 15/21 (71.4%) 6/6 (100%) 1/1 (100%) 22/28 (78.6)

tetO 18/21 (85.7%) 6/6 (100%) 0/1 (0%) 24/28 (85.7%)

gyrA-T86I 19/21 (90.5%) 6/6 (100%) 1/1 (100%) 26/28 (92.9%)

blaOXA-61 + tetO 15/21 (71.4%) 6/6 (100%) 0/1 (0%) 21/28 (77.8%)

blaOXA-61 + gyrA-T86I 13/21 (61.9%) 6/6 (100%) 1/1 (100%) 20/28 (71.4%)

tetO + gyrA-T86I 16/21 (76.2%) 6/6 (100%) 0/1 (0%) 22/28 (78.6%)

blaOXA-61 + tetO + gyrA-T86I 13/21 (61.9%) 6/6 (100%) 0/1 (0%) 19/28 (67.9%)

None 0/21 (0%) 0/6 (0%) 0/1 (0%) 0/28 (0%)

https://doi.org/10.1371/journal.pone.0194481.t001
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to C. jejuni isolates, which is in line with other studies [20, 21, 31, 32]. The whole genome

sequence data indicates that Campylobacter spp. isolated from humans and chickens in

Botswana have the potential to be resistant or multiply resistant to a number of antimicrobial

classes, however we did not test specifically for phenotypic antimicrobial resistance. The pres-

ence of antimicrobial resistance genes to first line treatment drugs is a concern. Collectively,

the data suggest that the efficacy of using current treatments for treating human campylobac-

teriosis and for the treatment or use as growth promoters in chickens should be evaluated.

Our analyses did not identify any Campylobacter spp. carrying 23S rRNA gene mutations

that confer macrolide resistance, suggesting that erythromycin or azithromycin may still be an

effective treatment. In addition, aminoglycosides such as gentamycin may be an alternative

option as we found no evidence of aphA-3 and aacA4 genes.

Importantly, this survey provides detailed insight into the phylogeny of and antimicrobial

resistance profiles of Campylobacter spp. in Botswana. Further studies that cover a larger geo-

graphic study area are necessary to detect emerging resistance patterns and to assess the impact

of strategies designed to mitigate antimicrobial resistance.

Materials and methods

Ethics statement

This study was reviewed and approved by the institutional review boards of the Botswana Min-

istry of Health, Gaborone, Botswana–PPME-13/18/1 Vol VII (434); Princess Marina Hospital,

Gaborone, Botswana—PPME-13/18/1 Vol VII (434); Health Research and Development Com-

mittee, University of Botswana—REF:UBR/RES/IRB/GRAD/394; University of Cambridge,

Cambridge, United Kingdom—REF:HBREC.2016.19. Written informed consent was obtained

from guardians/parents for all human subjects who had stool samples collected for this study.

Isolation of Campylobacter spp. from commercial and free-range broilers

The chickens were purchased from various poultry farms within the Gaborone catchment

area, which is located close to the border with South Africa. Chickens were obtained from five

sites with commercial broilers and eight sites with free-range chickens. The dataset included

fully grown ready-for-slaughter chickens from poultry farms and free-range chickens obtained

from small enterprises; only one farm was sampled in each sample represented in S1 Table.

‘Free-range’ chickens refer to the indigenous breed of chickens kept in Botswana. This type of

chicken is slow growing, reaching maturation and ready-for-slaughter at 5–6 months (opposed

to the broilers that are slaughtered at 4–5 weeks). These chickens are not housed but are

allowed to roam and forage in the farm area during the day, they are only sheltered to protect

them from predators at night.

A loop full of caecal sample was streaked on Campylobacter Blood-free selective agar; Char-

coal-Cefoperazone-Deoxycholate Agar (CCDA) [33], mixed with a selective supplement

SR0155 containing cefoperazone 32 mg/l and amphotericin B 10 mg/l of medium (Oxoid).

Isolates were incubated at 37˚C for 48 h under microaerobic conditions (Oxygen 5%, Car-

bon dioxide 5–8%) achieved using GasPakTM EZ Campylobacter sachets and incubation cham-

bers (Becton Dickinson and Company, USA). A plate inoculated with Campylobacter spp.

strain, C. jejuni ATCC1 33560TM (Microbiologics St. Cloud, USA), was included in every

incubation chamber as a control. Typical watery, spreading and convex colonies were picked

and screened for Campylobacter spp. using Gram stain, catalase and oxidase tests. Gram-nega-

tive, curved or seagull wing-shaped, catalase and oxidase positive, bacterial isolates were puri-

fied and suspended in cryovials containing plastic beads and 40% glycerol, followed by

freezing and storage at -80˚C.
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Isolation of Campylobacter spp. from human infection cases

Specimens were obtained from diarrhoeal patients from the largest referral hospital in

Botswana (Princess Marina Hospital, Gaborone, Botswana) and surrounding clinics. Inclusion

criteria include all stools from patients with acute gastroenteritis under the age of 13 years and

loose, watery and bloodstained stools from patients over the age of 13 years. Acute gastroenter-

itis was defined as having>2 loose bowel movements in a 24 h period or vomiting with any

loose stools with a maximum duration of 13 days. Exclusion criteria included, discharge from

hospital within 7 days of admission and diarrhoea of 14 days or longer. Samples were only col-

lected from patients that had given approval.

Stools collected in Carry Blair transport media (Becton Dickinson and Company, USA)

were cultured on the same day on Campylobacter selective agar; Columbia agar base with Skir-

row’s selective supplement with added vancomycin 10 mg/l, polymixyn B 5 mg/l and trimetho-

prim 2500 IU/l and 10% sheep blood. Samples were incubated under microaerobic conditions

(CampyGen, Oxoid). The weight and volume of the inoculum was not measured for each sam-

ple; a loop-full piece of stool, picked from the mucous part of the specimen, was streaked on

the selective agar media. Gram-negative curved or seagull wing-shaped, catalase and oxidase

positive, bacterial isolates were purified by subculture on new blood agar plates. The isolates

were suspended in cryovials containing plastic beads and 40% glycerol, followed by freezing

and storage at -80˚C.

Isolation of Campylobacter spp. genomic DNA for sequencing

Pure cultures of isolates were individually suspended in saline to match 0.5 MacFarland stan-

dard. DNA was extracted from the suspensions using MagNA Pure Compact Nucleic Acid Iso-

lation Kit I (Roche Diagnostics GmbH, Germany) on MagNA Pure Compact automated

extraction and purification platform, according to the manufacturer’s instructions (Roche

Diagnostics GmbH, Germany).

Whole genome sequencing

Genome sequencing libraries were prepared using the NEBNext Ultra II DNA library prep kit

(New England Biolabs) as described in de Vries et al. [34]. The libraries were sequenced using

150 bp paired-end sequencing on the Illumina HiSeq 4000 platform (Genomics core facility at

Cancer Research UK) or on the Illumina MiSeq platform using 250–300 bp paired-end

sequencing (in-house facility).

Genome assembly and annotation

The Illumina HiSeq 4000 read files were demultiplexed using the demuxFQ tool (Cancer

Research UK) and adapter-trimmed in Cutadapt. De novo draft genome assemblies were cre-

ated using Illumina HiSeq or MiSeq paired-end reads using Spades v3.6.2 [35] and annotated

with Prokka [36].

In silico-based MLST phylogeny

MLST was performed using the short-read sequence-typing tool SRST2 [37] with allele

sequences derived from the PubMLST database [24] (accessed in January 2017) as reference.

Novel allele sequences and STs were submitted to PubMLST database [24]. For comparative

analyses with African Campylobacter spp. isolates, MLST minimum spanning trees were gen-

erated and visualised in GrapeTree [25], which included African C. jejuni and C. coli isolates

available in PubMLST database [24] (accessed in January 2017). Further examination of the
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assembled genomes of the C. coli revealed some anomalies with the MLST genes. In 17 out of

28 C. coli isolates we observed the presence of an additional MLST gene allele. In all cases, this

involved a single gene out of the 7 MLST genes, e.g. in C. coli 2511 both gltA_16 and gltA_30

were present and in C. coli B10 both gltA_10 and gltA_30 were found. The second allele was

consistently detected at low coverage and in small contigs. Collectively, this involved 6 out of

the 7 MLST genes: gltA, uncA, aspA, glyA, tkt and glnA. For the C. coli MLST analyses pre-

sented, the high sequence coverage hits were selected. Importantly, such observations were not

made in any of the C. jejuni isolates which were sequenced at the same time, intermingled with

the C. coli isolates, suggesting that this is not related to a sequencing error or contamination.

This may be the result of horizontal gene transfer with the species C. coli.

Core genome and SNP-based phylogenetic analyses

Core genome phylogenetic analysis was performed in Roary [38] using the Prokka annotation

[36]; a 95% nucleotide identity cut-off was applied for inclusion in the core genome. Sequences

were aligned using MAFTT [39] and Maximum Likelihood (ML)-phylogeny was reconstructed

in RaxML v8.2.9, with GTRCAT approximation and automatic bootstrapping (autoMRE) using

rapid bootstrapping mode [40], and visualised in the interactive Tree of life tool (iTol) [23]. For

SNP-based phylogenies, sequence reads were aligned against C. jejuni NCTC11168 [22] as a ref-

erence genome using SMALT [41], following default settings to identify SNPs. Extracted SNPs

were used to construct ML-phylogenies using RaxML v 7.3.6 (rapid bootstrapping and subse-

quent ML search using 100 bootstrap replicates) [40].

In silico identification of antimicrobial resistance determinants

The gyrA and 23S rRNA gene sequences were extracted from the Prokka genome annotations.

The gyrA sequence was translated to the protein sequence and aligned. The 23S rRNA gene

sequences were directly aligned. Alignments were conducted in in CLC main workbench

v7.3.3. For GyrA we assessed aa position 70 for Ala to Thr (not found); amino acid (aa) posi-

tion 86 Thr to Ile (found and discussed), aa position 90 Asp to Asn (not found). For the 23S

rRNA gene we assessed positions 2074 and 2075 of which mutations confer high-level macro-

lide resistance [42]; no resistance-associated mutations were found. The intergenic region

between cmeR and cmeABC or mutations in the L4 and L22 ribosomal proteins were not

assessed as part of this study.

Antimicrobial resistance (AMR) gene detection was conducted through alignment of Illu-

mina sequence reads to a custom AMR gene database, which was built from gene sequences

available from the ARG-ANNOT [43] and RESfinder [44] databases. Of note, the compiled

AMR gene database also contained ermB that is implicated in macrolide resistance [43].

Statistical analyses

Statistical analyses were performed in R via the rpy2 module in Python. Bonferroni-corrected

P-values are reported.

Nucleotide sequence accession numbers

Illumina whole genome sequencing data has been deposited in the European Nucleotide

Archive (http://www.ebi.ac.uk/ena) and are available via study accession number

PRJEB18561.
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Supporting information

S1 Table. Overview of Campylobacter spp. isolates including; ID, source, sample location,

sample date, species and antimicrobial resistance gene (tetO, gyrA-T86I and blaOXA-61)

presence (P) or absence (A), MLST sequence type (ST), allelic profiles and ENA accession

numbers.

(DOCX)

S1 Fig. SNP-based phylogeny and AMR profile of C. jejuni isolates. SNP-based maximum

likelihood phylogeny of C. jejuni isolates visualised in interactive Tree of life tool (iTol) [S1].

The tree was rooted on reference isolate C. jejuni NCTC11168 [S2]. Clustering of isolates was

found to be in accordance between core genome and SNP-based phylogenies (Fig 1). Cluster-

ing of isolates belonging to the same ST was consistent. Shown for each isolate are: isolate iden-

tifier, the geographic location of isolation, presence of AMR determinants and ST.

(DOCX)

S2 Fig. SNP-based phylogeny and AMR profile of C. coli isolates. SNP-based maximum

likelihood phylogeny of C. coli isolates visualised in interactive Tree of life tool (iTol) [S1]. The

tree was rooted on reference isolate C. jejuni NCTC11168 [S2]. Clustering of isolates was

found to be in accordance between core genome and SNP-based phylogenies (Fig 2). Cluster-

ing of isolates belonging to the same ST was consistent. Shown for each isolate are: isolate iden-

tifier, the geographic location of isolation, presence of AMR determinants and ST.

(DOCX)
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