21 research outputs found
Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza
To overcome phosphorus (P) deficiency, about 80% of plant species establish symbiosis with arbuscular mycorrhizal fungi (AMF), which in return constitute a major sink of photosynthates. Information on whether plant carbon (C) allocation towards AMF increases with declining availability of the P source is limited. We offered orthophosphate (OP), apatite (AP), or phytic acid (PA) as the only P source available to arbuscular mycorrhiza (AM) (Solanum lycopersicum x Rhizophagus irregularis) in a mesocosm experiment, where the fungi had exclusive access to each P source. After exposure, we determined P contents in the plant, related these to the overall C budget of the system, including the organic C (OC) contents, the respired CO2, the phospholipid fatty acid (PLFA) 16:1ω5c (extraradical mycelium), and the neutral fatty acid (NLFA) 16:1ω5c (energy storage) at the fungal compartment. Arbuscular mycorrhizal (AM) plants incorporated P derived from the three P sources through the mycorrhizal pathway, but did this with differing C-P trading costs. The mobilization of PA and AP by the AM plant entailed larger mycelium infrastructure and significantly larger respiratory losses of CO2, in comparison with the utilization of the readily soluble OP. Our study thus suggests that AM plants invest larger C amounts into their fungal partners at lower P availability. This larger C flux to the AM fungi might also lead to larger soil organic C contents, in the course of forming larger AM biomass under P-limiting conditions. © 2020, The Author(s)
Unsichtbar wirksam : Bodenmikroaggregate: kleine Strukturen mit großer Wirkung
In der Bodenforschung spielen Mikroaggregate eine besondere Rolle. Sie haben eine komplexe innere Architektur in der mikrobielle, biogeochemische und physikalische Prozesse in Wechselwirkung stehen, die bisher noch sehr wenig untersucht, aber von fundamentaler Bedeutung für die Funktionsfähigkeit von Böden sind. Wissenschaftler vom Institut für Bodenkunde versuchen daher, einen Beitrag zum mechanistischen Verständnis der Bildung und Funktion von Mikroaggregaten zu leisten
Metal-induced artifacts in computed tomography and magnetic resonance imaging: comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls
OBJECTIVE: To evaluate metal artifacts induced by biodegradable magnesium-a new class of degradable biomaterial that is beginning to enter the orthopedic routine-on CT and MRI compared to standard titanium and steel controls.
METHODS: Different pins made of titanium, stainless steel, and biodegradable magnesium alloys were scanned using a second-generation dual-energy multidetector CT and a 1.5-T MR scanner. In CT, quantitative assessment of artifacts was performed by two independent readers by measuring the noise in standardized regions of interest close to the pins. In MRI, the artifact diameter was measured. Interobserver agreement was evaluated using intraclass correlation coefficients. Artifacts were compared using Mann Whitney U tests.
RESULTS: In comparison to stainless steel, biodegradable magnesium alloys induced significantly fewer artifacts in both 1.5-T MRI (p = 0.019-0.021) and CT (p = 0.003-0.006). Compared to titanium, magnesium induced significantly less artifact-related noise in CT (p = 0.003-0.008). Although artifacts were less on MRI for biodegradable magnesium compared to titanium, this result was not statistically significant.
CONCLUSION: Biodegradable magnesium alloys induce substantially fewer artifacts in CT compared to standard titanium and stainless steel, and fewer artifacts in MRI for the comparison with stainless steel
Permafrost degradation and its consequences for carbon storage in soils of Interior Alaska
Permafrost soils in the northern hemisphere are known to harbor large amounts of soil organic matter (SOM). Global climate warming endangers this stable soil organic carbon (SOC) pool by triggering permafrost thaw and deepening the active layer, while at the same time progressing soil formation. But depending, e.g., on ice content or drainage, conditions in the degraded permafrost can range from water-saturated/anoxic to dry/oxic, with concomitant shifts in SOM stabilizing mechanisms. In this field study in Interior Alaska, we investigated two sites featuring degraded permafrost, one water-saturated and the other well-drained, alongside a third site with intact permafrost. Soil aggregate- and density fractions highlighted that permafrost thaw promoted macroaggregate formation, amplified by the incorporation of particulate organic matter, in topsoils of both degradation sites, thus potentially counteracting a decrease in topsoil SOC induced by the permafrost thawing. However, the subsoils were found to store notably less SOC than the intact permafrost in all fractions of both degradation sites. Our investigations revealed up to net 75% smaller SOC storage in the upper 100 cm of degraded permafrost soils as compared to the intact one, predominantly related to the subsoils, while differences between soils of wet and dry degraded landscapes were minor. This study provides evidence that the consideration of different permafrost degradation landscapes and the employment of soil fractionation techniques is a useful combination to investigate soil development and SOM stabilization processes in this sensitive ecosystem
Process sequence of soil aggregate formation disentangled through multi-isotope labelling
Microaggregates (250 µm) that resisted 60 J mL−1 ultrasonic dispersion. Afterwards, we assessed the C, N, Fe, and Si stable isotope composition in each size fraction. After four weeks we found a rapid build-up of stable macroaggregates comprising almost 50 % of soil mass in the treatment with plants and respective soil rooting, but only 5 % when plants were absent. The formation of these stable macroaggregates proceeded with time. Soil organic carbon (SOC) contents were elevated by 15 % in the large macroaggregates induced by plant growth. However, the recovery of EPS-derived 13C was below 20 % after 4 weeks, indicating rapid turnover in treatments both with and without plants. The remaining EPS-derived C was mainly found in macroaggregates when plants were present and in the occluded small microaggregates (<20 µm) when plants were absent. The excess of bacterial 15N closely followed the pattern of EPS-derived 13C (R2 = 0.72). In contrast to the organic gluing agents, the goethite-57Fe and montmorillonite-29Si were relatively equally distributed across all size fractions. Overall, microaggregates were formed within weeks. Roots enforced this process by stabilizing microaggregates within stable macroaggregates. As time proceeded the labelled organic components decomposed, while the labelled secondary oxides and clay minerals increasingly contributed to aggregate stabilization and turnover at the scale of months and beyond. Consequently, the well-known hierarchical organization of aggregation follows a clear chronological sequence of stabilization and turnover processes
Some years ago, and some years to go : fastening technology in the Institute of Structural Engineering
On the occasion of Konrad Bergmeister's 20th anniversary of academic activity in the Institute of Structural Engineering, University of Natural Resources and Life Sciences, Vienna, the authors are happy to give a narration of the past and a wish for the future: to present the developments and innovations carried out by the team of fastening technology so far, and a preview of the future work anticipated. Since the last few years, particular investigations on the behaviour of connections to concrete under various design situations have been carried out in the Institute of Structural Engineering of the University of Natural Resources and Life Sciences (BOKU) - Vienna from the respective research group headed by Professor Konrad Bergmeister. Objective of the present paper is the review of the state-of-knowledge and the normative framework with regard to the response of fastenings under axial, shear and oblique loads, seismic excitation and long-term loading. The authors are excited to see the future of this research within the very promising recently established Christian Doppler Laboratory "Life-cycle robustness in fastening technology" (LiCRoFasT), and an outlook to the objectives of this research project is also presented herein
Metal-induced artifacts in computed tomography and magnetic resonance imaging: comparison of a biodegradable magnesium alloy versus titanium and stainless steel controls
Objective: To evaluate metal artifacts induced by biodegradable magnesium—a new class of degradable biomaterial that is beginning to enter the orthopedic routine—on CT and MRI compared to standard titanium and steel controls. Methods: Different pins made of titanium, stainless steel, and biodegradable magnesium alloys were scanned using a second-generation dual-energy multidetector CT and a 1.5-T MR scanner. In CT, quantitative assessment of artifacts was performed by two independent readers by measuring the noise in standardized regions of interest close to the pins. In MRI, the artifact diameter was measured. Interobserver agreement was evaluated using intraclass correlation coefficients. Artifacts were compared using Mann Whitney U tests. Results: In comparison to stainless steel, biodegradable magnesium alloys induced significantly fewer artifacts in both 1.5-T MRI (p = 0.019-0.021) and CT (p = 0.003-0.006). Compared to titanium, magnesium induced significantly less artifact-related noise in CT (p = 0.003-0.008). Although artifacts were less on MRI for biodegradable magnesium compared to titanium, this result was not statistically significant. Conclusion: Biodegradable magnesium alloys induce substantially fewer artifacts in CT compared to standard titanium and stainless steel, and fewer artifacts in MRI for the comparison with stainless steel
Neuromyelitis optica in Austria in 2011: to bridge the gap between neuroepidemiological research and practice in a study population of 8.4 million people.
BACKGROUND: In 2008 the Austrian Task Force for Neuromyelitis Optica (NMO) started a nation-wide network for information exchange and multi-centre collaboration. Their aim was to detect all patients with NMO or NMO spectrum disorders (NMO-SD) in Austria and to analyse their disease courses and response to treatment. METHODS: (1) As of March 2008, 1957 serum samples (of 1557 patients) have been tested with an established cell based immunofluorescence aquaporin-4 antibody (AQP4-ab) assay with a high sensitivity and specificity (both >95%). All tests were performed in a single reference laboratory (Clinical Dept. of Neurology of the Innsbruck Medical University). (2) A nation-wide survey with several calls for participation (via email newsletters, articles in the official journal of the Austrian Society of Neurology, and workshops) was initiated in 2008. All collected data will be presented in a way that allows that every individual patient can be traced back in order to ensure transparency and to avoid any data distortion in future meta-analyses. The careful and detailed presentation allows the visualization and comparison of the different disease courses in real time span. Failure and response to treatment are made visible at one glance. Database closure was 31 December 2011. All co-operators were offered co-authorship. RESULTS: All 71 NMO- or NMO-SD patients with AQP4-ab positivity (age range 12.3 to 79.6 years) were analysed in detail. Sex ratio (m:f = 1:7) and the proportion of patients without oligoclonal bands in cerebrospinal fluid (86.6%) were in line with previously published results. All identified patients were Caucasians. CONCLUSIONS: A nationwide collaboration amongst Austrian neurologists with good network communications made it possible to establish a database of 71 AQP4-ab positive patients with NMO/NMO-SD. This database is presented in detail and provides the basis for further studies and international cooperation in order to investigate this rare disease