72 research outputs found

    Optimization of Axial Piston Units Based on Demand-driven Relief of Tribological Contacts

    Get PDF
    Markets show a clear trend towards an ever more extensive electronic networking in mobile and stationary applications. This requires a certain degree of electronic integration of hydraulic components such as axial piston pumps. Beside some wellknow approaches, the transmission of axial piston units still is relatively unexplored regarding electronification. Nonetheless there is a quite high potential to be optimized by electronic. In view of this fact, the present paper deals with the tribological contacts of pumps based on a demand driven hydrostatic relief. The contact areas at cylinder - distributor plate, cradle bearing and slipper - swash plate will be investigated in detail and it will be shown how the pump behavior can be improved considerably through a higher level of relief and a central remaining force ratio. The potential of optimization is to improve the efficiency, especially in partial loaded operation, power range, also for multi quadrant operation, precision and stability. A stable lubricating film for slow-speed running and for very high speeds at different pressures is ensured as well

    Dissecting the Molecular Mechanisms of Intraflagellar Transport in Chlamydomonas

    Get PDF
    SummaryBackgroundThe assembly and maintenance of eukaryotic cilia and flagella are mediated by intraflagellar transport (IFT), a bidirectional microtubule (MT)-based transport system. The IFT system consists of anterograde (kinesin-2) and retrograde (cDynein1b) motor complexes and IFT particles comprising two complexes, A and B. In the current model for IFT, kinesin-2 carries cDynein1b, IFT particles, and axonemal precursors from the flagellar base to the tip, and cDynein1b transports kinesin-2, IFT particles, and axonemal turnover products from the tip back to the base. Most of the components of the IFT system have been identified and characterized, but the mechanisms by which these different components are coordinated and regulated at the flagellar base and tip are unclear.ResultsUsing a variety of Chlamydomonas mutants, we confirm that cDynein1b requires kinesin-2 for transport toward the tip and show that during retrograde IFT, kinesin-2 can exit the flagella independent of the cDynein1b light intermediate chain (LIC) and IFT particles. Furthermore, using biochemical approaches, we find that IFT complex B can associate with cDynein1b independent of complex A and cDynein1b LIC. Finally, using electron microscopy, we show that the IFT tip turnaround point most likely is localized distal to the plus end of the outer-doublet B MTs.ConclusionOur results support a model for IFT in which tip turnaround involves (1) dissociation of IFT complexes A and B and release of inactive cDynein1b from complex B, (2) binding of complex A to active cDynein1b, and (3) reassociation of complex B with A prior to retrograde IFT

    Associative nitrogen fixation in nodules of the conifer Lepidothamnus fonkii (Podocarpaceae) inhabiting ombrotrophic bogs in southern Patagonia

    Get PDF
    Biological N2 fixation (BNF) in the rhizosphere of Podocarpaceae is currently attributed to unspecific diazotrophs with negligible impact on N acquisition. Here, we report specific and high associative BNF in dead cells of root nodules of Lepidothamnus fonkii distributed in ombrotrophic peatlands of Patagonia. BNF of nodulated roots, intact plants of L. fonkii and rhizospheric peat was assessed by 15N2 and acetylene reduction. Diazotrophs were identified by electron microscopy, analysis of nitrogenase encoding genes (nifH) and transcripts, and 16S rRNA. Nitrogenase encoding nifH transcripts from root nodules point to Beijerinckiaceae (Rhizobiales), known as free-living diazotrophs. Electron microscopy and 16S rRNA analysis likewise identified active Beijerinckiaceae in outer dead cells of root nodules. NifH transcripts from the rhizopshere peat revealed diverse active diazotrophs including Beijerinckiaceae. Both methods revealed high activity of nitrogenase rates in cut roots of L. fonkii (2.5 μmol N g−1 d.w. d−1 based on 15N2 assay; 2.4 μmol C2H4 g−1 d.w. d−1 based on acetylene reduction assay). The data suggest that (i) nodules recruit diazotrophic Beijerinckiaceae from peat, (ii) dead nodule cells provide an exclusive habitat for Beijerinckiaceae, and (iii) BNF in L. fonkii is one potent pathway to overcome N deficiency in ombrotrophic peatlands of Patagonia.Bavarian Research Alliance (BayFOR

    Dynamischer Prüfstand für elektrische Antriebssysteme

    Get PDF

    Correction

    Get PDF

    Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana

    Get PDF
    Background: We have studied the impact of carbohydrate-starvation on the acclimation response to high light using Arabidopsis thaliana double mutants strongly impaired in the day- and night path of photoassimilate export from the chloroplast. A complete knock-out mutant of the triose phosphate/phosphate translocator (TPT; tpt-2 mutant) was crossed to mutants defective in (i) starch biosynthesis (adg1-1, pgm1 and pgi1-1; knock-outs of ADP-glucose pyrophosphorylase, plastidial phosphoglucomutase and phosphoglucose isomerase) or (ii) starch mobilization (sex1-3, knock-out of glucan water dikinase) as well as in (iii) maltose export from the chloroplast (mex1-2). Results: All double mutants were viable and indistinguishable from the wild type when grown under low light conditions, but - except for sex1-3/tpt-2 - developed a high chlorophyll fluorescence (HCF) phenotype and growth retardation when grown in high light. Immunoblots of thylakoid proteins, Blue-Native gel electrophoresis and chlorophyll fluorescence emission analyses at 77 Kelvin with the adg1-1/tpt-2 double mutant revealed that HCF was linked to a specific decrease in plastome-encoded core proteins of both photosystems (with the exception of the PSII component cytochrome b559), whereas nuclear-encoded antennae (LHCs) accumulated normally, but were predominantly not attached to their photosystems. Uncoupled antennae are the major cause for HCF of dark-adapted plants. Feeding of sucrose or glucose to high light-grown adg1-1/tpt-2 plants rescued the HCF- and growth phenotypes. Elevated sugar levels induce the expression of the glucose-6-phosphate/phosphate translocator2 (GPT2), which in principle could compensate for the deficiency in the TPT. A triple mutant with an additional defect in GPT2 (adg1-1/tpt-2/gpt2-1) exhibited an identical rescue of the HCF- and growth phenotype in response to sugar feeding as the adg1-1/tpt-2 double mutant, indicating that this rescue is independent from the sugar-triggered induction of GPT2. Conclusions: We propose that cytosolic carbohydrate availability modulates acclimation to high light in A. thaliana. It is conceivable that the strong relationship between the chloroplast and nucleus with respect to a co-ordinated expression of photosynthesis genes is modified in carbohydrate-starved plants. Hence carbohydrates may be considered as a novel component involved in chloroplast-to-nucleus retrograde signaling, an aspect that will be addressed in future studies

    Dynamic remodeling of the plastid envelope membranes - a tool for chloroplast envelope in vivo localizations

    Get PDF
    Breuers FKH, Bräutigam A, Geimer S, et al. Dynamic remodeling of the plastid envelope membranes - a tool for chloroplast envelope in vivo localizations. Frontiers in Plant Science. 2012;3: 7.Two envelope membranes delimit plastids, the defining organelles of plant cells. The inner and outer envelope membranes are unique in their protein and lipid composition. Several studies have attempted to establish the proteome of these two membranes; however, differentiating between them is difficult due to their close proximity. Here, we describe a novel approach to distinguish the localization of proteins between the two membranes using a straightforward approach based on live cell imaging coupled with transient expression. We base our approach on analyses of the distribution of GFP-fusions, which were aimed to verify outer envelope membrane proteomics data. To distinguish between outer envelope and inner envelope protein localization, we used AtTOC64-GFP and AtTIC40-GFP, as respective controls. During our analyses, we observed membrane proliferations and loss of chloroplast shape in conditions of protein over-expression. The morphology of the proliferations varied in correlation with the suborganellar distribution of the over-expressed proteins. In particular, while layers of membranes built up in the inner envelope membrane, the outer envelope formed long extensions into the cytosol. Using electron microscopy, we showed that these extensions were stromules, a dynamic feature of plastids. Since the behavior of the membranes is different and is related to the protein localization, we propose that in vivo studies based on the analysis of morphological differences of the membranes can be used to distinguish between inner and outer envelope localizations of proteins. To demonstrate the applicability of this approach, we demonstrated the localization of AtLACS9 to the outer envelope membrane. We also discuss protein impact on membrane behavior and regulation of protein insertion into membranes, and provide new hypotheses on the formation of stromules

    CEP128 Localizes to the Subdistal Appendages of the Mother Centriole and Regulates TGF-β/BMP Signaling at the Primary Cilium

    Get PDF
    Summary: The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling. Loss of CEP128 did not grossly affect centrosomal or ciliary structure but caused impaired transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) signaling in zebrafish and at the primary cilium in cultured mammalian cells. This phenotype is likely the result of defective vesicle trafficking at the cilium as ciliary localization of RAB11 was impaired upon loss of CEP128, and quantitative phosphoproteomics revealed that CEP128 loss affects TGF-β1-induced phosphorylation of multiple proteins that regulate cilium-associated vesicle trafficking. : Mönnich et al. show that CEP128 localizes to the subdistal appendages of the mother centriole and basal body of the primary cilium. CEP128 regulates vesicular trafficking and targeting of RAB11 to the primary cilium. CEP128 loss leads to impaired TGF-β/BMP signaling, which, in zebrafish, is associated with defective organ development. Keywords: primary cilium, basal body, centriole, subdistal appendage, centrosome, transforming growth factor β, TGF-β, bone morphogenetic protein, BMP, zebrafish, phosphoproteomics, CEP12
    corecore