11 research outputs found

    Generating Natural-language Process Descriptions from Formal Process Definitions

    Get PDF
    ABSTRACT Process models are often used to support the understanding and analysis of complex systems. The accuracy of such process models usually requires that domain experts carefully review, evaluate, correct, and propose improvements to these models. Domain experts, however, are often not experts in process modeling and may not even have any programming experience. Consequently, domain experts may not have the skills to understand the process models except at a relatively superficial level. To address this issue, we have developed an approach for automatically generating natural-language process descriptions based on formal process models. Unlike natural language process descriptions in existing electronic process guides, these process descriptions are generated completely automatically and can describe complex process features, such as exception handling, concurrency, and non-determinisitc choice. The generated process descriptions have been well-received by domain experts from several different fields, and they have also proven useful to process programmers

    A benchmark for evaluating software engineering techniques for improving medical processes

    Full text link
    The software engineering and medical informatics communi-ties have been developing a range of approaches for reason-ing about medical processes. To facilitate the comparison of such approaches, it would be desirable to have a set of medical examples, or benchmarks, that are easily available, described in considerable detail, and characterized in terms of the real-world complexities they capture. This paper presents one such benchmark and discusses a list of desider-ata that medical benchmarks can be evaluated against

    Cardiovascular control and stabilization via inclination and mobilization during bed rest

    Full text link
    Cardiovascular deconditioning has long been recognized as a characteristic of the physiological adaptation to long-term bed rest in patients. The process is thought to contribute to orthostatic intolerance and enhance secondary complications in a significant way. Mobilization is a cost-effective and simple method to maintain the cardiovascular parameters (i.e., blood pressure, heart rate) stable, counter orthostatic intolerance and reduce the risk of secondary problems in patients during long-term immobilization. The aim of this project is to control the cardiovascular parameters such as heart rate and blood pressure of bed rest patients via automated leg mobilization and body tilting. In a first step, a nonlinear model predictive control strategy was designed and evaluated on five healthy subjects and 11 bed rest patients. In a next step, a clinically feasible study was conducted on two patients. The mean values differed on average less than 1 bpm from the predetermined heart rate and less than 2.5 mmHg from the desired blood pressure values. These results of the feasibility study are promising, although heterogeneous disease etiologies and individual medication strongly influence the mechanically induced reactions. The long-term goal is an automation of the control of physiological signals and the mobilization of bed rest patients in an early phase of the rehabilitation process. Therefore, this new approach could help to strengthen the cardiovascular system and prevent secondary health problems arising from long-term bed rest

    Towards isolated attosecond pulses at megahertz repetition rates

    No full text
    The strong-field process of high-harmonic generation is the foundation for generating isolated attosecond pulses, which are the fastest controllable events ever induced. This coherent extreme-ultraviolet radiation has become an indispensable tool for resolving ultrafast motion in atoms and molecules. Despite numerous spectacular developments in the new field of attoscience, the low data-acquisition rates imposed by low-repetition-rate (maximum of 3 kHz) laser systems hamper the advancement of these sophisticated experiments. Consequently, the availability of high-repetition-rate sources will overcome a major obstacle in this young field. Here, we present the first megahertz-level source of extreme-ultraviolet continua with evidence of isolated attosecond pulses using a fibre laser-pumped optical parametric amplifier for high-harmonic generation at 0.6 MHz. This 200-fold increase in repetition rate will enable and promote a vast variety of new applications, such as attosecond-resolution coincidence and photoelectron spectroscopy, or even video-rate acquisition for spatially resolved pump-probe measurements

    Алапаевская искра. 2010. № 141

    Get PDF
    The Precision IceCube Next Generation Upgrade (PINGU) is a proposed lowenergy in-fill extension to the IceCube Neutrino Observatory. With detection technology modeled closely on the successful IceCube example, PINGU will provide a 6 Mton effective mass for neutrino detection with an energy threshold of a few GeV. With an unprecedented sample of over 60 000 atmospheric neutrinos per year in this energy range, PINGU will make highly competitive measurements of neutrino oscillation parameters in an energy range over an order of magnitude higher than long-baseline neutrino beam experiments. PINGU will measure the mixing parameters Θ23 and Δm232, including the octant of Θ23 for a wide range of values, and determine the neutrino mass ordering at 3σ median significance within five years of operation. PINGU's high precision measurement of the rate of nt appearance will provide essential tests of the unitarity of the 3 ×3 PMNS neutrino mixing matrix. PINGU will also improve the sensitivity of searches for low mass dark matter in the Sun, use neutrino tomography to directly probe the composition of the Earth's core, and improve IceCube's sensitivity to neutrinos from Galactic supernovae. Reoptimization of the PINGU design has permitted substantial reduction in both cost and logistical requirements while delivering performance nearly identical to configurations previously studied

    Erratum to : Search for annihilating dark matter in the Sun with 3 years of IceCube data

    No full text
    corecore