
Generating Natural-language Process Descriptions from
Formal Process Definitions

Stefan C. Christov
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
christov@cs.umass.edu

Tiffany Y. Chao
∗

Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
tiffany.y.chao@boeing.com

Lori A. Clarke
Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
clarke@cs.umass.edu

ABSTRACT
Process models are often used to support the understand-
ing and analysis of complex systems. The accuracy of such
process models usually requires that domain experts care-
fully review, evaluate, correct, and propose improvements
to these models. Domain experts, however, are often not
experts in process modeling and may not even have any pro-
gramming experience. Consequently, domain experts may
not have the skills to understand the process models except
at a relatively superficial level. To address this issue, we
have developed an approach for automatically generating
natural-language process descriptions based on formal pro-
cess models. Unlike natural language process descriptions
in existing electronic process guides, these process descrip-
tions are generated completely automatically and can de-
scribe complex process features, such as exception handling,
concurrency, and non-determinisitc choice. The generated
process descriptions have been well-received by domain ex-
perts from several different fields, and they have also proven
useful to process programmers.

Keywords
natural-language process description, electronic process guide,
process modeling, continuous process improvement

1. INTRODUCTION
Process models are often used to describe the interaction

among human agents, software systems, and hardware com-
ponents [8, 9, 11, 20]. For human-intensive systems, such
as life-critical medical procedures, search and rescue op-
erations, and command and control management, human
agents require extensive expertise and play a critical role in
the success of the overall system mission [10, 14, 16]. Thus,
the process models for such systems must accurately repre-
sent the important roles that such human agents play. To

∗Tiffany Chao now works at The Boeing Company, Seattle,
WA 98124.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSSP’10, May 21-22, 2011, Honolulu, Hawaii, USA.
Copyright 2011 ACM XXX-X-XXXX-XXXX-X/XX/XX ...$10.00.

develop accurate models of a human-intensive process, it
is usually important that the domain experts carefully re-
view, evaluate, correct, and propose improvements to these
models. Domain experts, however, are often not experts in
process modeling and may not have any programming ex-
perience. Consequently, domain experts may not have the
skills to understand the process models except at a relatively
superficial level. We have seen this problem in our own work
on modeling medical procedures. Medical professionals may
be able to point out glaring misrepresentations, but are not
sufficiently versed in modeling to fully understand the impli-
cations, for example, of complex control flow (e.g., exception
handling) or data flow (e.g., call by value).

To help domain experts understand complex processes, we
have developed the Little-JIL Narrator. The Narrator takes
a Little-JIL [6] process definition (i.e., the process model),
a set of templates of English phrases that define the differ-
ent semantic elements of the process modeling language, and
customization rules, and weaves together a textual, hyper-
linked, description of the process model. In addition to a
natural-language description of the process model, this tex-
tual representation includes a table of contents and an in-
dex of process steps. The generated narrative has been ex-
tremely well received by the non-computing domain experts
with whom we have been working. Surprisingly, the com-
puter scientists involved in these projects have also found
it to be a useful representation for reviewing the evolving
process models. Moreover, it seems to be a useful training
guide to help novices learn about a complex process.

Requirements and design documents often include a natu-
ral-language description of a system. There is often a mis-
match, however, between these natural-language descrip-
tions and a formal description of the same process [8]. The
natural-language descriptions are often imprecise and in-
complete, and quickly become out-of-sync with evolving for-
mal descriptions. The generated narrative created by our
prototype tool, however, is as precise and complete as the
Little-JIL process definition from which it is derived. On the
other hand, it is also a more detailed and verbose represen-
tation than most human-created natural-language descrip-
tions. To overcome this awkwardness, customization rules
can be used to selectively remove some of the details and to
control the level of explanation.

In this paper, we describe the Little-JIL Narrator. The
next section discusses related work. Section 3 presents a
simplified Little-JIL process definition based on a real-world
medical process that we have elicited from domain experts
and then provides and explains the generated narrative. Sec-

tion 4 then provides an overview of the Narrator design. Sec-
tion 5 describes our experience with the Narrator and some
issues that were encountered. The final section concludes
with a discussion of future research directions.

2. RELATED WORK
The importance of describing processes to various stake-

holders, perhaps from different backgrounds, is well-establi-
shed. In some early efforts to accomplish this, organiza-
tions created paper-based process guides or manuals that
describe, largely in natural language, the process of interest.
It has been observed however, that such paper-based guides
are difficult to navigate due to their inherently linear struc-
ture and significant size, time-consuming to develop, hard
to keep in sync with the evolving process (or its formal de-
scription), and nearly impossible to customize. Thus, such
paper-based guides are not very effective and rarely created
or used [13].

To alleviate some of the disadvantages of paper-based pro-
cess guides, organizations have resorted to electronic process
guides (EPGs), which usually contain hyperlinks that facil-
itate navigation. Using hyperlinks addresses to some extent
the navigation problems with paper-based process guides.
Manually creating and maintaining EPGs remains a large
problem. For example, [5] reports that during the main-
tenance of a V-Modell guide, “when changing the glossary
structure to tool-tip style, some 2000 links had to be up-
dated.” As a result, some tools have been proposed to au-
tomatically generate EPGs, such as Adonis [1], ARIS [2],
Eclipse Process Framework (EPF) Composer [12], and Spear-
mint [4]. Such tools use a process model as an input to
a generator that automatically creates a hyperlinked EPG
based on that process model. The process model is usually
captured in some notation that supports constructs such as
activities (and often their hierarchical decomposition), arti-
facts and resources, roles (or agents), and the relationships
between these constructs (e.g., which role is responsible for
which activity, what resources are needed to perform an ac-
tivity, and what artifacts are produced by an activity. Pro-
cess engineers can also associate detailed natural-language
descriptions with these components of a process model.

Once a process model is in place, an EPG generator can
use it to create a hyperlinked document describing the pro-
cess. EPF Composer and Spearmint, for instance, create a
document that has a section showing the decomposition of
the process activities (as a summary view of the process) and
another section with a detailed natural-language description
of the selected activity/artifact/role. These sections, how-
ever, contain little indication of the order, or the flow of
control among the process activities. The section that pro-
vides a summary view of the process, for example, shows
the hierarchical decomposition of the process activities, but
not the order in which they need to be executed. The de-
tailed, natural-language description of the selected activity
may contain some information about control flow, but this
information is included in a non-systematic way as it is up
to the person who writes the description associated with a
given activity to decide how much control flow information
to include.

For complex system processes, such as medical processes,
precise activity ordering or control flow information can be
very important. Medical guidelines, for instance, can define
strict constraints on the order of performing certain activ-

ities. Also, medical processes exhibit a high degree of con-
currency (as different medical professionals can work on the
same process in parallel) and non-deterministic choices made
by agents at runtime. Thus, understanding and reasoning
about such complex processes by various stakeholders ne-
cessitates the inclusion of such control flow information in
the corresponding natural-language description. Relying on
the process engineer to manually include such control flow
information is not satisfactory. A manual approach is error-
prone, time-consuming, and does not guarantee complete-
ness of the included control-flow information. Furthermore,
a manual approach makes maintaining the natural-language
description and ensuring that it stays consistent with the
associated process model difficult.

Another concern with the natural-language process de-
scriptions generated by the tools mentioned above is related
to the lack of semantic richness of the process notations used
to create the process models that are in turn the basis for the
generation of EPGs. Such process notations often lack sup-
port for complex exception handling behavior, concurrency
and synchronization mechanisms, or even mechanisms for
simpler constructs such as looping. For example, [17] reports
that the EPF Composer was not able to represent parts of a
software development process because EPF Composer could
not adequately model the looping at the activity level.

The hyperlinked, natural-language description generated
by the Little-JIL Narrator described here contains informa-
tion about resources, artifacts and agents, similar to the
EPGs generated by the tools discussed above, but also in-
cludes a detailed description of the control flow. The Little-
JIL language provides complex control flow constructs, such
as support for exceptional behavior, concurrency, synchro-
nization, and recursion, thereby making the generation of
the narrative more challenging. Finally, the full description
is automatically generated from the process model, eliminat-
ing the issues related to manual creation and maintenance
mentioned above.

3. EXAMPLE
This section presents a Little-JIL process definition for a

simplified chemotherapy process, and then shows and ex-
plains the natural-language description generated from this
process model using the Narrator. Chemotherapy is a very
high-risk medical procedure since incorrect administration of
chemotherapy medications can be fatal for patients or cause
them irreversible harm. As a result, complex and sophisti-
cated processes are in place to ensure that proper checks are
done and that the risk of harming patients is minimized.

In our model, the chemotherapy process starts with a
patient consultation where an oncologist examines the pa-
tient’s biopsy results, makes a diagnosis, decides whether
chemotherapy is needed, and accordingly creates a treat-
ment plan and medication orders. To increase safety, a se-
quence of redundancy checks usually follows. A nurse and a
pharmacist perform a set of verifications ranging from ensur-
ing that the ordered medication are appropriate for the pa-
tient’s diagnosis (according to best practices from the med-
ical literature) to checking the recentness of the patient’s
height and weight data on which chemotherapy doses are
based. A nurse practitioner needs to conduct a teaching
session with the patient to explain the chemotherapy med-
ications and their side effects, to obtain the patient’s in-
formed consent for chemotherapy administration, and op-

tionally, depending on prescribed medications, to set up
the patient’s intravenous access. Once all these prepara-
tory tasks are performed, the patient can be administered
chemotherapy. On the day of chemotherapy administration,
a clinic nurse performs final checks to make sure that the
patient’s condition allows the treatment, collaborates with
the pharmacist who prepares the chemotherapy medication,
and finally administers the medications to the patient.

The chemotherapy process, which often spans several days
or even weeks, exhibits several kinds of complexities. For in-
stance, the chemotherapy process involves a variety of pro-
cess performers, or agents, who need to carefully and effec-
tively coordinate their actions to perform the process safely
and efficiently. Exceptional scenarios can significantly com-
plicate the process. For example, a doctor may prescribe a
medication that is inappropriate for the diagnosis or a med-
ical assistant might record incorrect patient weight, which
can trickle down the process and eventually affect the doses
of the administered chemotherapy medications. Such prob-
lems need to be detected and then dealt with carefully.

For this example, we present a part of the definition of the
chemotherapy process described above in the Little-JIL pro-
cess modeling language. Little-JIL [6] is a process modeling
language with rich semantics that are useful in capturing the
complexities of real-world processes such as the chemother-
apy process. Little-JIL’s semantics are also formally defined,
which makes process definitions amenable to various kinds
of automated analysis (e.g., [7, 8, 18,21]).

The main building block of a Little-JIL process definition
is the step, which corresponds to an activity performed by
human or automated agents and is iconically represented by
a black rectangle. Little-JIL process definitions contain a
hierarchical decomposition of steps, where steps at a higher
level of abstraction are decomposed into substeps at a lower
level of abstraction and the decomposition can continue to
any desired level of detail. For example, the high-level step
prepare for and administer first cycle of chemotherapy in
Figure 1 is decomposed into five substeps—perform con-
sultation and assessment, perform initial review of patient
records, and so on.

Prepare for and administer first cycle of chemotherapy is
a sequential step (indicated by the arrow in the step rectan-
gle), which means that its substeps need to be performed in
left to right order. The substep install portacath (a porta-
cath is a device for intravenous access) is an optional step
(indicated by the question mark above the step). This means
that it is up to the step’s agent to decide whether to per-
form that step. Since not all chemotherapy regimes require
the installation of a portacath, the agent may decide not to
execute this step for some patients.

The substep perform consultation and assessment is fur-
ther elaborated in Figure 2. This step has a prerequisite
(indicated by the filled triangle to the left of the step rect-
angle) to represent the fact that before the patient consul-
tation and assessment can start, the patient biopsy must
have been performed. perform consultation and assessment
is also a sequential step and thus its substeps need to be
performed in left to right order.

The substep create treatment plan and orders is a paral-
lel step (indicated by the equal sign on the step rectangle),
which means that its substeps can be executed in any or-
der, including simultaneously. This represents the fact that

the oncologist can choose to create the treatment plan, the
chemotherapy orders, and the premedication orders in any
order. Furthermore, the oncologist can choose between two
alternative options for how to create the treatment plan—
using a standardized treatment plan template (a careset)
or creating the treatment plan from scratch. The process
definition in Figure 2 captures this fact by making create
treatment plan a choice step. A choice step (represented
by a circle over a line in the step rectangle) means that the
agent can complete the step by choosing and completing one
of the substeps successfully.

While performing the step confirm pathology report indi-
cates cancer in Figure 2, the oncologist may discover that
the pathology report in fact does not indicate cancer. When
this unusual circumstance arises, it needs to be properly ad-
dressed and requires a deviation from the normal process
flow. This is modeled by using Little-JIL’s exception han-
dling mechanisms. The step confirm pathology report indi-
cates cancer in Figure 2 throws the exception PathologyRe-
portDoesNotIndicateCancer. The exception propagates up
the step tree until a matching exception handler is found. An
exception handler is itself a regular step and, as any step, it
can be decomposed to any desired level of detail. In this ex-
ample, the exception PathologyReportDoesNotIndicateCan-
cer is handled by the handler consider alternative treatment
attached to the ”X” in the step rectangle of the step prepare
for and administer first cycle of chemotherapy in Figure 1.
Once the handler step consider alternative treatment is per-
formed, Little-JIL’s continuation action semantics are used
to indicate how the process should continue. In this exam-
ple, the continuation action is complete (indicated by the la-
bel on the edge connecting the handler and its parent step),
which means that the parent step prepare for and admin-
ister first cycle of chemotherapy is considered successfully
completed.

In Little-JIL, each step is performed by humans or au-
tomated agents, where an agent is considered to be a re-
source that must be obtained before the step can be com-
menced. For example, the step perform initial review of
patient records in Figure 1 is performed by a Practice Reg-
istered Nurse (RN) and a Pharmacist, and the steps obtain
patient informed consent and install portacath are performed
by a Nurse Practitioner. To reduce visual clutter, we did not
annotate every step in Figures 1 and 2 with agents.

The rich semantics of Little-JIL allow the definition of
the chemotherapy process to capture many aspects of the
real-world process concisely. While these features of Little-
JIL and other similar process notations make process defini-
tions attractive to system engineers and other people trained
in these notations, non-technical people may prefer textual
rather than a graphical visual representations. Figure 3
shows the automatically generated textual narrative created
by the Narrator from the process definition shown in Fig-
ures 1 and 2.

The narrative consists of two main parts: a table of con-
tents on the left and the descriptive part on the right. The
table of contents lists the names of the steps from the process
definition and uses the same icons used in the diagramatic
representation to represent the step kinds (e.g., sequential,
parallel, leaf step). The parent/child relationship from the
Little-JIL process definition tree is captured by the indenta-
tion in the table of contents. For example, the steps at one
level of indentation under prepare for and administer first

Figure 1: An example chemotherapy process.

Figure 2: Elaboration of perform consultation and assessment.

cycle of chemotherapy, namely perform consultation and as-
sessment, perform initial review of patient records, and so
on, are the substeps of prepare for and administer first cycle
of chemotherapy.

The table of contents also shows the exception handlers.
For example, the step consider alternative treatment is an
exception handler, indicated by the icon on the left, which
shows the continuation action (in this case complete) that
needs to be taken after the handling of an exception is done.
Each step in the table of contents is also a hyperlink and
clicking on it will bring up a more detailed description of
that step in the descriptive part of the narrative.

The descriptive part of the narrative (the right part of
Figure 3) contains a section for each step in the process def-
inition. This step section consists of several subsections that
present various attributes of the given step, such as name,
pre/post requisites, substep sequencing information, excep-
tions, and required resources. For instance, the step section
for Perform Consultation And Assessment contains a sub-

section about the step’s prerequisite, a subsection about the
step’s substeps and the order in which they have to be ex-
ecuted, and a subsection about an exception that the step
throws and how that exception is handled.

Unlike the diagrammatic representation of the process def-
inition in Figures 1 and 2 where familiarity with the notation
semantics is assumed, the descriptive part presents carefully
selected sentences that explain the process in natural lan-
guage . For example, the step section for Perform Consulta-
tion And Assessment in Figure 3 explains what it means for
the step to have a prerequisite, namely that the prerequisite
step perform biopsy on patient needs to be completed before
the step can be started. Similarly, it explains what it means
for the step to be a sequential step, namely that its substeps
need to be completed in the listed order.

The descriptive part of the narrative also uses hyperlinks
to facilitate navigation. When the substep perform tasks on
day of chemotherapy (in the step section for Prepare For And
Administer First Cycle of Chemotherapy) is clicked, for ex-

Figure 3: The automatically generated narrative for the process definition in Figures 1 and 2.

ample, its step section will be displayed and the user will see
the detailed information associated with that step. Another
facility to help with navigation is an alphabetized index of
step names (shown in the bottom right part of Figure 3),
where each step is represented as a hyperlink that can be
clicked to display the description for that step. The index
can be opened at any time by clicking on Index of step names
on the top of the main part of the narrative and closed when
not needed.

The narrative uses the same icons as the diagramatic view
of the process definition. Although these icons are not neces-
sary to understand the narrative view, they might be helpful
for users who would like to work with both views at the same
time. They also provide some visual grouping of sentences
based on the icon the sentences are associated with. The
meaning of the icons can be seen in a legend (shown in the
top right part of Figre 3), which can be opened and closed
the same way as the index of step names.

4. DESIGN APPROACH
This section presents the architecture of the Little-JIL

Narrator and explains the constituting components.
Figure 4 shows the high-level architecture of the Narra-

tor. The Little-JIL Process Definition, the Phrasing Tem-
plates, and the Customization Rules are used as inputs by
the Narration Weaver to produce the Narrative Content,
which contains just the content and the structure without
any formatting of the natural-language document that is to
be generated. The Formatting Weaver then combines the
Narrative Content together with the Formatting Templates
to produce the final Generated Narrative. The Little-JIL
Process Definition artifact represents any process definition
created in the Little-JIL language (like the one described in
section 3).

Phrasing Templates. The Phrasing Templates are pa-
rameterized, natural-language phrases that correspond to
the different semantic features of the Little-JIL process lan-
guage. A phrasing template expresses in natural language

Figure 4: Architecture of the Little-JIL Narrator.

the meaning of a particular semantic feature (e.g., what it
means for a step to be sequential), where the parameters
represent information that is specific to a given process def-
inition.

Figure 5 shows three example phrasing templates. The
first phrasing template is used with sequential process steps
to generate a sentence explaining the order of execution of
their substeps. That is, if a process step “do activity A” is
sequential, that phrasing template can be used to generate
a sentence saying that to do activity A, its substeps need to
be done in the listed sequential order (<substepsList> will
be substituted with a list of the substeps of activity A). The
text snippet starting with To “prepare for and administer...
and ending with the bulleted substep list in the step section
for Prepare For and Administer First Cycle of Chemotherapy
in Figure 3 was produced using this phrasing template to
describe the substep ordering semantics of the root step in
Figure 1.

The second phrasing template in Figure 5 is used to gen-
erate a sentence that explains what it means for a step to
have a prerequisite. For instance, applying this phrasing
template to the step perform consultation and assessment
(in Figure 2) and its prerequisite perform biopsy on patient
results in the sentence Before beginning “perform consulta-
tion and assessment”, the step “perform biopsy on patient”
must be completed successfully. This exact sentence can be
seen in the step section for Perform Consultation And As-
sessment in Figure 3.

The third phrasing template in Figure 5 is used to gener-
ate a sentence explaining what it means for a step to throw
an exception and how it is handled. For instance, applying
this phrasing template to the step perform consultation and
assessment, which can throw the exception PathologyReport-
DoesNotIndicateCancer (as shown in Figure 1), results in
the sentence If Pathology Report Does Not Indicate Cancer,
then consider alternative treatment and complete “prepare
for and administer first cycle of chemotherapy.” This sen-
tence briefly captures what the exceptional event is, how it is
dealt with (i.e., by executing the exception handler consider
alternative treatment) and how normal process execution is
resumed after the exception has been handled.

Customization Rules. The Customization Rules in the
Narrator architecture in Figure 4 represent a set of user pref-
erences to customize the content and the structure of the
generated natural-language narrative. The Narrator sup-
ports the use of synonyms. For example, different words can
be used to refer to a process activity. The parameter <activ-

To <stepName>, the following need to be done in the
listed order <substepsList>.
Before beginning to <stepName>, the <activityName>
<prerequisite> must be completed successfully.
If <exception>, then <handler> and then complete
<parentStepName>.

Figure 5: Example phrasing templates.

ityName> in the second phrasing template in Figure 5 is a
placeholder for such a synonym. The word“step”was used in
place of <activityName> when this phrasing template was
instantiated to describe the prerequisite of Perform Consul-
tation and Assessment in Figure 3. The user could choose,
other synonyms instead, such as “activity” or “task.”

Another kind of customization supported by the Little-JIL
Narrator deals with the ability to hide or show certain kinds
of process information. For example, the user can select to
hide or show sentences that present information about the
resources in a process definition. Before the narrative shown
in Figure 3 was generated, the option to show resources was
selected. Thus, resource information, such as the human re-
sources (agents) responsible for executing the process steps,
is included in the narrative. The user can choose to hide this
information or, alternatively, the user can choose to include
additional information about the resources and the artifacts
used in the process. Choosing to include such additional in-
formation results in the narrative containing sentences such
as Successful completion of the step “perform consultation
and assessment” should yield the chemo orders. The Nar-
rator also provides the flexibility to choose what kinds of
process steps to associate certain information with. For ex-
ample, the user can choose to show resource information only
for leaf process but not intermediate process steps. This is
sometimes useful as intermediate steps in Little-JIL are of-
ten used for coordination purposes, whereas the actual work
performed by agents is modeled by leaf steps.

The Little-JIL Narrator also provides facilities to cus-
tomize the sentence structure of the generated narrative.
For instance, the user can define when the substeps of a
step should be enumerated as a comma-separated phrase or
when they should be shown as a list. Consider the substeps
of Prepare For And Administer First Cycle of Chemotherapy
in Figure 3. In this example, they are shown as a list follow-
ing the phrase To “prepare for ...”, the following need to be
done in the listed order. The user could alternatively choose
the following comma-separated version for that sentence:

To “prepare for and administer first cycle of chemotherapy”,
first perform consultation and assessment, then perform ini-
tial review of patient records, then obtain patient informed
consent, then install portacath (optionally), and finally per-
form tasks on the day of chemotherapy.

Formatting Templates. The Narrative Content artifact
produced by the Narration Weaver (as shown in Figure 4)
contains the raw content of the generated narrative, but
does not have any formatting information. It is the job of
the Formatting Templates to define the presentation style of
the generated narrative. This design essentially follows the
well-established recommendations from the web application
domain to separate content from presentation.

For Figure 3, for example, the Formatting Templates were
responsible for defining text font, text color, text size, text
style (e.g., bold vs. non-bold), spacing information and
background color for the table of contents, the main part
of the narrative, the index and the legend. The Formatting
Templates were also responsible for associating images (e.g,
arrow, filled circle, check mark, etc.) with the different sec-
tions of the narrative and for the visualization (indentation
and vertical lines that help keeping track of the hierarchical
decomposition) of the table of contents.

The set of Formatting Templates used by the Formatting
Weaver in this example resulted in an HTML-based gen-
erated narrative. A different set of Formatting Templates
could be used to produce a plain text (not hyperlinked) nar-
rative or a narrative in some other document format.

In terms of implementation, the Phrasing Templates, the
Customization Rules, and the Narrative Content artifacts
are currently XML documents following a schema we de-
fined. The Narration Weaver is a Java system. The format-
ting templates are expressed as XSLT [3] templates and the
Formatting Weaver is therefore an XSLT processor.

5. DISCUSSION
This section discusses our experiences applying the Little-

JIL Narrator to definitions of real-world processes and some
of the issues that arose.

5.1 Experience
We have used the Narrator to generate natural-language

descriptions of several large Little-JIL definitions of real-
world processes from the medical and negotiations domains
[8,9,15]. In particular, we have applied the tool to a chemo-
therapy, a blood transfusion, and an online dispute reso-
lution (ODR) process definition. These process definitions
were developed in collaboration with domain experts as part
of case studies evaluating the application of process model-
ing and formal analysis technology in support of continuous
process improvement. The chemotherapy process definition
had 467 Little-JIL steps (207 of which were related to the
handling of 59 exceptional situations); the blood transfu-
sion process definition had 248 Little-JIL steps (37 of which
were related to the handling of 15 exceptional situations);
and the ODR process definition had 209 Little-JIL steps
(108 of which were related to the handling of 19 exceptional
situations).

Even though it is an early prototype, our experiences with
the Little-JIL Narrator have been very positive and promis-
ing. The medicial professionals from whom we elicited the
medical processes expressed satisfaction with the generated
narrative. They liked the fact that the process was described

in natural language that they could easily understand and,
at the same time, the description was precise yet contained
a significant level of detail. Furthermore, since the narrative
is automatically generated from a Little-JIL process defini-
tion, we were able to show the domain experts the most up-
to-date natural-language description and discuss the latest
process changes and additions with them. The ODR domain
expert, however, preferred to look at the diagrammatic de-
piction of the Little-JIL ODR process definition and have
a process programmer explain the semantics of the Little-
JIL iconography. This experience suggests that although a
generated natural-language description of a process defini-
tion is beneficial to certain domain experts, it is certainly
not a replacement for the diagrammatic view and the two
representations could complement each other in an EPG.

Besides being beneficial to domain experts, the generated
narrative turned out to be beneficial to process programmers
as well. Little-JIL process programmers use the Little-JIL
visual editor to create and edit process definitions. Being
able to look at the natural-language narrative helped reveal
errors in the process definition that were not immediately
noticeable in the diagrammatic representation. For exam-
ple, artifact flow is not easily visible in the diagramatic rep-
resentation and inspecting the generated narrative helped
pinpoint omissions from or unnecessary additions of arti-
facts to certain process steps. Similarly, the diagrammatic
specification of the number of times a step needs to be exe-
cuted (e.g., an asterisk for 0 or more times) could be easily
overlooked by a Little-JIL process programmer. Seeing a
phrase, such as “this step should be done 0 or more times”
in the generated narrative, however, makes this information
easier to spot and correct, when the given step should not be
executed that many number of times. The ability to auto-
matically and quickly (it takes about a second for a process
definition with several hundred steps) generate a narrative
makes the Little-JIL Narrator a useful tool for debugging
process definitions.

Perhaps one obvious disadvantage of the generated Narra-
tive is its size. The natural-language descriptions of the non-
trivial process definitions we worked with tended to be quite
long and verbose. Unfortunately this is inevitable when try-
ing to express precisely and completely in natural language
all the information captured in a process definition created
in a semantically rich process language, such as Little-JIL.
The customization rules that the Little-JIL narrator sup-
ports were useful in addressing this issue, by allowing the
user to selectively hide or show information and thus focus
interest on selected aspects of the process definition (e.g.,
control flow only, but no artifact flow).

The separation of concerns supported by the design of
the Narrator allowed for easy modifications to the tool. In
particular, it was easy to experiment with and change the
description of the semantics of the language, as only the per-
tinent phrasing templates had to be changed. Similarly, it
was easy to modify the look-and-feel of the generated HTML
document based on user feedback because only the format-
ting templates had to be changed.

5.2 Issues
Some interesting issues arose during the design, imple-

mentation, and use of the Little-JIL Narrator.
To generate text automatically that reads naturally to

humans requires that the process definitions be written ac-

cording to some guidelines or conventions. To be able to
plug step names from the Little-JIL process definition di-
rectly into the phrasing templates, for example, we assume
that step names start with a verb. For instance, the pa-
rameter <stepName> in the first two phrasing templates in
Figure 5 need to be substituted by a step name starting with
a verb, otherwise the generated sentence will not read natu-
rally. Our experience with the Little-JIL Narrator, and with
process definitions in general, indicates that this assumption
about step names is reasonable and not very limiting. Since
process steps correspond to activities, most of the time step
names are phrases that indeed start with a verb. Estab-
lishing a convention for naming process steps in such a way
did not seem to be hard to follow or impose any artificial
constraints when we were developing definitions for several
large processes from the medical and negotiations domains.

Another difficulty that we encountered was related to the
combination of the semantic richness of Little-JIL and the
need to statically determine certain kinds of information to
be included in the generated narrative. For example, Little-
JIL’s choice step represents non-deterministic choice. To
perform a choice step, any of its substeps can be chosen,
and if the chosen substep is completed successfully, then the
parent choice step is completed successfully as well. If the
selected chosen step fails, however, the agent can choose to
perform any of the remaining substeps of the choice step.
Generating a natural-language sentence that explicitly de-
scribes what happens when a substep of a choice step fails
is impossible, however, because statically it is not known
which substep will be chosen and hence which substeps will
remain as alternatives if the first chosen step fails. We dealt
with this issue by trading off the precision of the generated
natural-language text for its correctness. Thus, when gener-
ating the natural language for the situation when a substep
of a choice step fails, we simply do not specify exactly which
of the remaining substeps needs to be performed next but
indicate the set of choices.

Generating natural language that accurately describes ar-
tifact flow also proved to be challenging. Since Little-JIL
is a scoped process modeling language, some artifacts pass
through certain steps just to reach steps in different scopes,
but such artifacts are not necessarily used or modified in the
steps they pass through. Thus, it is not possible to deter-
mine statically if an artifact gets used or modified in a step,
which again necessitates trading off precision for correctness
of the generated natural-language description. Moreover,
simply mentioning in the generated narrative that an arti-
fact passes through a step is not satisfactory because it is
not very informative and, more importantly, because such
information is too tightly coupled with the artifact flow tech-
nicalities of the process language, which might not be of
interest to domain experts. For such artifacts, the current
phrasing is that they may get used or modified. One pos-
sible approach for improving the precision of the generated
description of artifacts is to have the creator of the process
definition explicitly provide information when an artifact is
used and/or modified and when it simply passes through a
step. Such annotations would also improve the accuracy of
some of the analysis approaches that we also apply.

Another challenge is representing the rich exception han-
dling semantics of Little-JIL in natural language. As in
many scoped (process) programming languages, when an ex-
ception is thrown, the handler may not be located in the im-

mediate enclosing scope. Thus, there needs to be a search for
the matching handler. When describing exception handling,
the natural-language narrative needs to specify the appropri-
ate handle as well as how the process returns to normal flow
once an exception has been handled. This is complicated
by the several exception-handling continuation semantics of
Little-JIL, by the fact that the continuation action depends
on the context of the handler (i.e., the kind of step, such as
parallel or sequential step, to which it is attached), and by
the fact that an exception handler can throw an exception
itself. These complications lead to a large number of phras-
ing templates to describe exceptional flow (over 100) and to
challenges in determining which text to generate statically.
While we have created most of the necessary phrasing tem-
plates to describe Little-JIL’s exception handling semantics,
for the sake of simplicity, the current implementation of the
Narrator supports the generation of natural language for just
the most commonly used exception handling constructs.

6. CONCLUSION
The Little-JIL Narrator automatically generates a hyper-

linked natural-language description based on a formal pro-
cess definition specified in a semantically rich process mod-
eling language. The generated narrative describes process
constructs such as resources, artifacts, activities, and agents.
It also provides detailed and precise information about the
control flow of process activities, including exception han-
dling, concurrency and non-deterministic choice. The cus-
tomization rules supported by the Little-JIL Narrator allow
the user to tailor the generated narrative by selectively fil-
tering out information, such as resource and artifact descrip-
tions. The flexible template-based design of the Little-JIL
Narrator allows modifications of the phrasing used to de-
scribe the formal semantics of the process language as well
as modifications of the presentation style of the generated
narrative to be easily made.

There are several directions for potential improvement of
the Little-JIL Narrator approach. Linking the generated
narrative to a glossary of terms, or ontology, seems to be
a useful direction. Such a capability is already supported
by some EPG tools, such as Spearmint. A glossary may
help novice process performers who are unfamiliar with all
the terminology and who use the generated narrative as a
process guide. It could also help process programmers who
are not necessarily familiar with all the domain terminology.

Another area of improvement is including additional cus-
tomization rules. Although the customization rules cur-
rently supported by the Narrator are very helpful for selec-
tively filtering content and increasing usability, there is some
evidence suggesting that more extensive tailoring could fur-
ther improve the usability of the process descriptions [19].
For example, being able to present only the part of a process
description related to a specific role would focus the descrip-
tion and may make it easier to navigate and understand by
an individual with that specific process role.

The Little-JIL Narrator could also benefit from a better
user interface for editing the phrasing templates and the
customization rules. Currently, these are expressed in XML
format and, despite the fact that the XML schema used is
very simple, having a graphical user interface for editing the
templates and the rules would make the tool more accessible
to non-technical users.

The index generated by the Narrator could also be im-

proved. It currently contains only step names, but it may
be useful to have indexes that include resource names, ex-
ceptions, and roles.

Our initial experience with the Little-JIL Narrator has
been promising. We have applied the Narrator to several
large definitions of real-world processes from the medical and
negotiations domains; the generated narrative has been well-
received by domain experts. The generated narrative also
seems to be useful to process programmers for discovering
errors in a process definition.

The main focus of the Little-JIL Narrator is natural lan-
guage generation and it aims to support stakeholders who
are uncomfortable with formal notations or stakeholders who
are technically savvy but can gain additional insight into
the process (or its model) from its natural-language descrip-
tion. Such a generated narrative could be a useful addi-
tion to existing electronic process guides as it complements
other components of these systems, such as a graphical pro-
cess representation. Unlike natural language descriptions in
existing EPGs, the narrative is generated completely auto-
matically and supports the description of complex process
features, such as exception handling, concurrency and non-
determinisitc choice. We believe that the Little-JIL Narrator
approach is an important step towards automatically gen-
erating natural-language descriptions of non-trivial process
models specified in semantically-rich process languages.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Awards CCF-0820198, CCF-
0905530 and IIS-0705772, and by a Gift from the Baystate
Medical Center, Rays of Hope Foundation. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not neces-
sarily reflect the views of the NSF.

The authors gratefully acknowledge the contributions of
Eric Raboin, who developed the first version of the Little-
JIL Narrator and whose work contributed to the look-and-
feel of the tool, and of Meagan Day, who made contribu-
tions to the phrasing templates. The authors also gratefully
acknowledge George Avrunin, Heather Conboy, Elizabeth
Henneman, Lee Osterweil, and Sandy Wise for the discus-
sions and feedback on the Little-JIL Narrator.

8. REFERENCES
[1] Adonis, www.boc-group.com/at.

[2] Aris, www.ids-scheer.de.

[3] XSL transformations (XSLT) version 2.0,
www.w3.org/tr/xslt20.

[4] U. Becker-Kornstaedt, D. Hamann, R. Kempkens,
P. Rösch, M. Verlage, R. Webby, and J. Zettel.
Support for the process engineer: The Spearmint
approach to software process definition and process
guidance. In Proceedings of the 11th International
Conference on Advanced Information Systems
Engineering, CAiSE ’99, pages 119–133.
Springer-Verlag, 1999.

[5] U. Becker-Kornstaedt and M. Verlage. The V-modell
guide: Experience with a web-based approach for
process support. In Proceedings of Software
Technology and Engineering Practice (STEP), pages
161–168. IEEE Computer Society Press, 1999.

[6] A. G. Cass, B. S. Lerner, J. Stanley M. Sutton, E. K.
McCall, A. Wise, and L. J. Osterweil.
Little-JIL/Juliette: a process definition language and
interpreter. In ICSE ’00: Proceedings of the 22nd
International Conference on Software Engineering,
pages 754–757. ACM, 2000.

[7] B. Chen, G. S. Avrunin, L. A. Clarke, and L. J.
Osterweil. Automatic fault tree derivation from
Little-JIL process definitions. In SPW/ProSim,
volume 3966 of LNCS, pages 150–158, Shanghai, May
2006.

[8] B. Chen, G. S. Avrunin, E. A. Henneman, L. A.
Clarke, L. J. Osterweil, and P. L. Henneman.
Analyzing medical processes. In ICSE ’08: Proceedings
of the 30th International Conference on Software
Engineering, pages 623–632. ACM, 2008.

[9] S. Christov, B. Chen, G. S. Avrunin, L. A. Clarke,
L. J. Osterweil, D. Brown, L. Cassells, and
W. Mertens. Formally defining medical processes.
Methods of Information in Medicine. Special Topic on
Model-Based Design of Trustworthy Health
Information Systems, 47(5):392–398, 2008.

[10] L. A. Clarke, L. J. Osterweil, and G. S. Avrunin.
Supporting human-intensive systems. In Proceedings
of the FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10, pages 87–92. ACM,
2010.

[11] C. Damas, B. Lambeau, F. Roucoux, and A. van
Lamsweerde. Analyzing critical process models
through behavior model synthesis. In ICSE ’09:
Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, pages 441–451.
IEEE Computer Society, 2009.

[12] P. Haumer. Increasing development increasing
development knowledge with EPFC. Eclipse Review,
pages 26–33, 2006.

[13] M. Kellner, U. Becker-Kornstaedt, W. Riddle,
J. Tomal, and M. Verlage. Process guides: Effective
guidance for process participants. In Proeceedings of
the International Conference on the Software Process,
pages 11–25, 1998.

[14] J. D. Lee and K. A. See. Trust in automation:
designing for appropriate reliance. Human Factors:
The Journal of the Human Factors and Ergonomics
Society, 46:50–80, 2004.

[15] L. J. Osterweil and L. A. Clarke. Supporting
negotiation and dispute resolution with computing
and communication technologies. In Proceedings of the
FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10, pages 269–272.
ACM, 2010.

[16] R. Parasuraman and V. Riley. Humans and
automation: use, misuse, disuse, abuse. Human
Factors: The Journal of the Human Factors and
Ergonomics Society, 39(2):230–253, June 1997.

[17] M. Phongpaibul, S. Koolmanojwong, A. Lam, and
B. Boehm. Comparative experiences with electronic
process guide generator tools. In Proceedings of the
International Conference on Software Process,
ICSP’07, pages 61–72. Springer-Verlag, 2007.

[18] M. Raunak, L. Osterweil, A. Wise, L. Clarke, and
P. Henneman. Simulating patient flow through an

emergency department using process-driven discrete
event simulation. In SEHC ’09: Proceedings of the
2009 ICSE Workshop on Software Engineering in
Health Care, pages 73–83. IEEE Computer Society,
2009.

[19] L. Scott, L. Carvalho, R. Jeffery, and
U. Becker-Kornstaedt. Understanding the use of an
electronic process guide. Information and Software
Technology, 44:601–616, 2002.

[20] B. I. Simidchieva, M. S. Marzilli, L. A. Clarke, and
L. J. Osterweil. Specifying and verifying requirements

for election processes. In Proceedings of the 2008
International Conference on Digital Government
Research, dg.o ’08, pages 63–72. Digital Government
Society of North America, 2008.

[21] D. Wang, J. Pan, G. S. Avrunin, L. A. Clarke, and
B. Chen. An automatic failure mode and effect
analysis technique for processes defined in the little-jil
process definition language. In Proceedings of the
International Conference on Software Engineering and
Knowledge Engineering (SEKE 2010), pages 765–770,
2010.

