53 research outputs found

    Fuel Cell Modeling and Simulations

    Get PDF
    Fundamental and phenomenological models for cells, stacks, and complete systems of PEFC and SOFC are reviewed and their predictive power is assessed by comparing model simulations against experiments. Computationally efficient models suited for engineering design include the (1+1) dimensionality approach, which decouples the membrane in-plane and through-plane processes, and the volume-averaged-method (VAM) that considers only the lumped effect of pre-selected system components. The former model was shown to capture the measured lateral current density inhomogeneities in a PEFC and the latter was used for the optimization of commercial SOFC systems. State Space Modeling (SSM) was used to identify the main reaction pathways in SOFC and, in conjunction with the implementation of geometrically well- defined electrodes, has opened a new direction for the understanding of electrochemical reactions. Furthermore, SSM has advanced the understanding of the COpoisoning- induced anode impedance in PEFC. Detailed numerical models such as the Lattice Boltzmann (LB) method for transport in porous media and the full 3-D Computational Fluid Dynamics (CFD) Navier-Stokes simulations are addressed. These models contain all components of the relevant physics and they can improve the understanding of the related phenomena, a necessary condition for the development of both appropriate simplified models as well as reliable technologies. Within the LB framework, a technique for the characterization and computer- reconstruction of the porous electrode structure was developed using advanced pattern recognition algorithms. In CFD modeling, 3-D simulations were used to investigate SOFC with internal methane steam reforming and have exemplified the significance of porous and novel fractal channel distributors for the fuel and oxidant delivery, as well as for the cooling of PEFC. As importantly, the novel concept has been put forth of functionally designed, fractal-shaped fuel cells, showing promise of significant performance improvements over the conventional rectangular shaped units. Thermo-economic modeling for the optimization of PEFC is finally addressed

    Exclusive Solution Discharge in Li–O2 Batteries?

    No full text
    Capacity, rate performance, and cycle life of aprotic Li-O2 batteries critically depend on reversible electrodeposition of Li2O2. Current understanding states surface-adsorbed versus solvated LiO2 controls Li2O2 growth as surface film or as large particles. Herein, we show that Li2O2 forms across a wide range of electrolytes, carbons, and current densities as particles via solution-mediated LiO2 disproportionation, bringing into question the prevalence of any surface growth under practical conditions. We describe a unified O2 reduction mechanism, which can explain all found capacity relations and Li2O2 morphologies with exclusive solution discharge. Determining particle morphology and achievable capacities are species mobilities, true areal rate, and the degree of LiO2 association in solution. Capacity is conclusively limited by mass transport through the tortuous Li2O2 rather than electron transport through a passivating Li2O2 film. Provided that species mobilities and surface growth are high, high capacities are also achieved with weakly solvating electrolytes, which were previously considered prototypical for low capacity via surface growth.ISSN:2380-819

    A Reversible and Higher-Rate Li-O<sub>2 </sub>Battery

    No full text
    The rechargeable nonaqueous lithium-air (Li-O2) battery is receiving a great deal of interest because, theoretically, its specific energy far exceeds the best that can be achieved with lithium-ion cells. Operation of the rechargeable Li-O2 battery depends critically on repeated and highly reversible formation/decomposition of lithium peroxide (Li2O2) at the cathode upon cycling. Here, we show that this process is possible with the use of a dimethyl sulfoxide electrolyte and a porous gold electrode (95% capacity retention from cycles 1 to 100), whereas previously only partial Li2O2 formation/decomposition and limited cycling could occur. Furthermore, we present data indicating that the kinetics of Li2O2 oxidation on charge is approximately 10 times faster than on carbon electrodes. </p

    Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen.

    No full text
    Solid alkali metal carbonates are universal passivation layer components of intercalation battery materials and common side products in metal-O2 batteries, and are believed to form and decompose reversibly in metal-O2 /CO2 cells. In these cathodes, Li2 CO3 decomposes to CO2 when exposed to potentials above 3.8 V vs. Li/Li+ . However, O2 evolution, as would be expected according to the decomposition reaction 2 Li2 CO3 →4 Li+ +4 e- +2 CO2 +O2 , is not detected. O atoms are thus unaccounted for, which was previously ascribed to unidentified parasitic reactions. Here, we show that highly reactive singlet oxygen (1 O2 ) forms upon oxidizing Li2 CO3 in an aprotic electrolyte and therefore does not evolve as O2 . These results have substantial implications for the long-term cyclability of batteries: they underpin the importance of avoiding 1 O2 in metal-O2 batteries, question the possibility of a reversible metal-O2 /CO2 battery based on a carbonate discharge product, and help explain the interfacial reactivity of transition-metal cathodes with residual Li2 CO3

    Oscillations in gas channels. Part I. The forgotten player in impedance spectroscopy in PEFCs

    No full text
    Our experimental results shown here disprove that finite diffusion can generally be assumed in ac impedance models for H-2/air-polymer electrolyte fuel cells (PEFCs) to account for the diffusive transport of oxygen through the gas diffusion layer (GDL) toward the air electrode. It is shown that the amplitude of the oxygen concentration oscillation created as a consequence of superimposed ac current at the air electrode is not zero at the channel/GDL interface but extends into the gas channels, at least below modulation frequencies of f(mod)=10 Hz. By this, sinusoidal oxygen-concentration oscillations within the cathode gas channels are excited locally along the flow field. Due to the forced air convection in the cathode flow-field channels, a coupling via the gas phase occurs downstream of the flow field. The coupling strongly affects the local and by this the overall impedance response of the cell and evokes the formation of a low-frequency arc in H-2/air-PEFC impedance spectra. Based on the experimental results, a qualitative model is presented explaining the local impedance response of a segmented 200 cm(2) H-2/air PEF

    Li-O-2 Battery with a Dimethylformamide Electrolyte

    No full text
    Stability of the electrolyte toward reduced oxygen species generated at the cathode is a crucial challenge for the rechargeable nonaqueous Li-O-2 battery. Here, we investigate dimethylformamide as the basis of an electrolyte. Although reactions at the O-2 cathode on the first discharge charge cycle are dominated by reversible Li2O2 formation/decomposition, there is also electrolyte decomposition, which increases on cycling. The products of decomposition at the. cathode on discharge are Li2O2, Li2CO3, HCO2Li, CH3CO2Li, NO, H2O, and CO2. Li2CO3 accumulates in the electrode with cycling. The stability of dimethylformamide toward reduced oxygen species is insufficient for its use in the rechargeable nonaqueous Li-O-2 battery.</p
    • …
    corecore