44 research outputs found

    Soil morphology, depth and grapevine root frequency influence microbial communities in a Pinot noir vineyard

    Get PDF
    The composition of microbial communities responds to soil resource availability, and has been shown to vary with increasing depth in the soil profile. Soil microorganisms partly rely on root-derived carbon (C) for growth and activity. Roots in woody perennial systems like vineyards have a deeper vertical distribution than grasslands and annual agriculture. Thus, we hypothesized that vineyard soil microbial communities along a vertical soil profile would differ from those observed in grassland and annual agricultural systems. In a Pinot noir vineyard, soil pits were excavated to ca. 1.6–2.5m, and microbial community composition in ‘bulk’ (i.e., no roots) and ‘root’ (i.e., roots present) soil was described by phospholipid ester-linked fatty acids (PLFA). Utilization of soil taxonomy aided in understanding relationships between soil microbial communities, soil resources and other physical and chemical characteristics. Soil microbial communities in the Ap horizon were similar to each other, but greater variation in microbial communities was observed among the lower horizons. Soil resources (i.e., total PLFA, or labile C, soil C and nitrogen, and exchangeable potassium) were enriched in the surface horizons and significantly explained the distribution of soil microbial communities with depth. Soil chemical properties represented the secondary gradient explaining the differentiation between microbial communities in the B-horizons from the C-horizons. Relative abundance of Gram-positive bacteria and actinomycetes did not vary with depth, but were enriched in ‘root’ vs. ‘bulk’ soils. Fungal biomarkers increased with increasing depth in ‘root’ soils, differing from previous studies in grasslands and annual agricultural systems. This was dependent on the deep distribution of roots in the vineyard soil profile, suggesting that the distinct pattern in PLFA biomarkers may have been strongly affected by C derived from the grapevine roots. Gram-negative bacteria did not increase in concert with fungal abundance, suggesting that acidic pHs in lower soil horizons may have discouraged their growth. These results emphasize the importance of considering soil morphology and associated soil characteristics when investigating effects of depth and roots on soil microorganisms, and suggest that vineyard management practices and deep grapevine root distribution combine to cultivate a unique microbial community in these soil profiles

    Climate-smart agriculture global research agenda: Scientific basis for action

    Get PDF
    Background: Climate-smart agriculture (CSA) addresses the challenge of meeting the growing demand for food, fibre and fuel, despite the changing climate and fewer opportunities for agricultural expansion on additional lands. CSA focuses on contributing to economic development, poverty reduction and food security; maintaining and enhancing the productivity and resilience of natural and agricultural ecosystem functions, thus building natural capital; and reducing trade-offs involved in meeting these goals. Current gaps in knowledge, work within CSA, and agendas for interdisciplinary research and science-based actions identified at the 2013 Global Science Conference on Climate-Smart Agriculture (Davis, CA, USA) are described here within three themes: (1) farm and food systems, (2) landscape and regional issues and (3) institutional and policy aspects. The first two themes comprise crop physiology and genetics, mitigation and adaptation for livestock and agriculture, barriers to adoption of CSA practices, climate risk management and energy and biofuels (theme 1); and modelling adaptation and uncertainty, achieving multifunctionality, food and fishery systems, forest biodiversity and ecosystem services, rural migration from climate change and metrics (theme 2). Theme 3 comprises designing research that bridges disciplines, integrating stakeholder input to directly link science, action and governance. Outcomes: In addition to interdisciplinary research among these themes, imperatives include developing (1) models that include adaptation and transformation at either the farm or landscape level; (2) capacity approaches to examine multifunctional solutions for agronomic, ecological and socioeconomic challenges; (3) scenarios that are validated by direct evidence and metrics to support behaviours that foster resilience and natural capital; (4) reductions in the risk that can present formidable barriers for farmers during adoption of new technology and practices; and (5) an understanding of how climate affects the rural labour force, land tenure and cultural integrity, and thus the stability of food production. Effective work in CSA will involve stakeholders, address governance issues, examine uncertainties, incorporate social benefits with technological change, and establish climate finance within a green development framework. Here, the socioecological approach is intended to reduce development controversies associated with CSA and to identify technologies, policies and approaches leading to sustainable food production and consumption patterns in a changing climate

    Population dynamics and identification of efficient strains of Azospirillum in maize ecosystems of Bihar (India)

    Get PDF
    Information on inoculum load and diversity of native microbial community is an important prerequisite for crop management of microbial origin. Azospirillum has a proven role in benefiting the maize (Zea mays) crop in terms of nutrient (nitrogen) supply as well as plant growth enhancement. Bihar state has highest average national maize productivity although fertilizer consumption is minimum, indicating richness of Azospirillum both in terms of population and diversity in soils. An experiment was planned to generate basic information on Azospirillum population variation in maize soils under different agricultural practices and soil types of Bihar, to identify suitable agricultural practices supporting the target microorganism and efficient Azospirillum strain(s). No tillage, growing traditional maize cultivar, land use history (diara soil having history of maize cultivation), soil organic carbon (>1%) and intercrop with oat supported prevalence of Azospirillum in maize rhizosphere. Native Azospirillum population varied from 1 million to 1 billion/g soil under diverse agricultural practices and soil types. Such richness, however, does not necessarily mean that artificial inoculation of Azospirillum is not required in Bihar soils as 92% of Azospirillum isolates (50 isolates) were poor in nitrogen-fixing ability and 88% were poor on IAA production. Efficient strains of Azospirillum based on growth (three), acetylene reduction assay (three), IAA production (three), broad range of pH (two) and temperature tolerance were identified. The findings suggested that maize crop in Bihar should be inoculated in universal mode rather than site-specific mode

    Assessment of carbon in woody plants and soil across a vineyard-woodland landscape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.</p> <p>Results</p> <p>Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.</p> <p>Conclusions</p> <p>This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.</p

    Sustainable and Equitable Increases in Fruit and Vegetable Productivity and Consumption are Needed to Achieve Global Nutrition Security

    Get PDF
    Increased intake of fruits and vegetables (F&V) is recommended for most populations across the globe. However, the current state of global and regional food systems is such that F&V availability, the production required to sustain them, and consumer food choices are all severely deficient to meet this need. Given the critical state of public health and nutrition worldwide, as well as the fragility of the ecological systems and resources on which they rely, there is a great need for research, investment, and innovation in F&V systems to nourish our global population. Here, we review the challenges that must be addressed in order to expand production and consumption of F&V sustainably and on a global scale. At the conclusion of the workshop, the gathered participants drafted the “Aspen/Keystone Declaration” (see below), which announces the formation of a new “Community of Practice,” whose area of work is described in this position paper. The need for this work is based on a series of premises discussed in detail at the workshop and summarized herein. To surmount these challenges, opportunities are presented for growth and innovation in F&V food systems. The paper is organized into five sections based on primary points of intervention in global F&V systems: (1) research and development, (2) information needs to better inform policy & investment, (3) production (farmers, farming practices, and supply), (4) consumption (availability, access, and demand), and (5) sustainable & equitable F&V food systems and supply chains

    Irrigation of an established vineyard with winery cleaning agent solution (simulated winery wastewater): vine growth, berry quality, and soil chemistry

    No full text
    The ability to use winery wastewater (WW) for irrigation purposes could be a beneficial to the wine industry. A major difficulty in studying WW use is its inconsistent availability and composition. As such, we applied four simulated WWs composed of salts from two main industrial cleaning agents, and a control to 12-year-old 'Syrah' (clone 99, 3309C rootstock; Vitis riparia×. V. rupestris). Briefly, the treatments simulated wineries utilising a sodium (Na) based cleaner; a potassium (K) based cleaner; a K based cleaner coupled with higher water use efficiency, resulting in a higher K concentration; and a combination of elevated K levels with the presence of wine, to consider the potential synergistic/antagonistic effects of the salts and organic matter. Soil salt concentrations increased consistently with the nature of the treatment applied, with K and Na treatments causing increased soil K and Na, respectively. Analysis of salt accumulation at various depths indicated that Na was more mobile in soils; however, the addition of wine to irrigation water enhanced K transport to the subsurface. Petiole concentrations of K and Na were approximately three-fold and nine-fold greater in the K and Na treatments than control. Attributes related to berry and juice quality differed among treatments at both vĂ©raison (juice K and anthocyanin concentrations) and harvest (juice Na, juice K, total phenolics, berry weight, and harvest weights), although the majority of these were slight, and therefore unlikely to have significant impact on wine quality. Based on the data collected, occasional irrigation with these simulated WWs appears to have had minimal impact on established vines. Nonetheless, there is potential for greater impacts to occur over longer time periods due to the perennial nature of grapevines and accumulation of salts in the soil. © 2013.Kim P.M. Mosse, Jungmin Lee, Benjamin T. Leachman, Sanjai J. Parikh, Timothy R. Cavagnaro, Antonio F. Patti, Kerri L. Steenwert

    Soil biological and chemical properties in restored perennial grassland in California. Restoration Ecology

    No full text
    Abstract Restoration of California native perennial grassland is often initiated with cultivation to reduce the density and cover of non-native annual grasses before seeding with native perennials. Tillage is known to adversely impact agriculturally cultivated land; thus changes in soil biological functions, as indicated by carbon (C) turnover and C retention, may also be negatively affected by these restoration techniques. We investigated a restored perennial grassland in the fourth year after planting Nassella pulchra, Elymus glaucus, and Hordeum brachyantherum ssp. californicum for total soil C and nitrogen (N), microbial biomass C, microbial respiration, CO 2 concentrations in the soil atmosphere, surface efflux of CO 2 , and root distribution (0-to 15-, 15-to 30-, 30-to 60-, and 60-to 80-cm depths). A comparison was made between untreated annual grassland and plots without plant cover still maintained by tillage and herbicide. In the uppermost layer (0-to 15-cm depth), total C, microbial biomass C, and respiration were lower in the tilled, bare soil than in the grassland soils, as was CO 2 efflux from the soil surface. Root length near perennial bunchgrasses was lower at the surface and greater at lower depths than in the annual grass-dominated areas; a similar but less pronounced trend was observed for root biomass. Few differences in soil biological or chemical properties occurred below 15-cm depth, except that at lower depths, the CO 2 concentration in the soil atmosphere was lower in the plots without vegetation, possibly from reduced production of CO 2 due to the lack of root respiration. Similar microbiological properties in soil layers below 15-cm depth suggest that deeper microbiota rely on more recalcitrant C sources and are less affected by plant removal than in the surface layer, even after 6 years. Without primary production, restoration procedures with extended periods of tillage and herbicide applications led to net losses of C during the plant-free periods. However, at 4 years after planting native grasses, soil microbial biomass and activity were nearly the same as the former conditions represented by annual grassland, suggesting high resilience to the temporary disturbance caused by tillage
    corecore