12 research outputs found

    Hot receptors in the brain

    Get PDF
    Two major approaches have been employed for the development of novel drugs to treat chronic pain. The most traditional approach identifies molecules involved in pain as potential therapeutic targets and has focused mainly on the periphery and spinal cord. A more recent approach identifies molecules that are involved in long-term plasticity. Drugs developed through the latter approach are predicted to treat chronic, but not physiological or acute, pain. The TRPV1 (transient receptor potential vanilloid-1) receptor is involved in nociceptive processing, and is a candidate therapeutic target for pain. While most research on TRPV1 receptors has been conducted at the level of the spinal cord and peripheral structures, considerably less research has focused on supraspinal structures. This short paper summarizes progress made on TRPV1 receptors, and reviews research on the expression and function of TRPV1 receptors in supraspinal structures. We suggest that the TRPV1 receptor may be involved in pain processing in higher brain structures, such as the anterior cingulate cortex. In addition, some regions of the brain utilize the TRPV1 receptor for functions apparently unrelated to pain

    CaMKIV over-expression boosts cortical 4-7 Hz oscillations during learning and 1-4 Hz delta oscillations during sleep

    Get PDF
    Mounting evidence suggests that neural oscillations are related to the learning and consolidation of newly formed memory in the mammalian brain. Four to seven Hertz (4-7 Hz) oscillations in the prefrontal cortex are also postulated to be involved in learning and attention processes. Additionally, slow delta oscillations (1-4 Hz) have been proposed to be involved in memory consolidation or even synaptic down scaling during sleep. The molecular mechanisms which link learning-related oscillations during wakefulness to sleep-related oscillations remain unknown. We show that increasing the expression of calcium/calmodulin dependent protein kinase IV (CaMKIV), a key nucleic protein kinase, selectively enhances 4-7.5 Hz oscillation power during trace fear learning and slow delta oscillations during subsequent sleep. These oscillations were found to be boosted in response to the trace fear paradigm and are likely to be localized to regions of the prefrontal cortex. Correlation analyses demonstrate that a proportion of the variance in 4-7.5 Hz oscillations, during fear conditioning, could account for some degree of learning and subsequent memory formation, while changes in slow delta power did not share this predictive strength. Our data emphasize the role of CaMKIV in controlling learning and sleep-related oscillations and suggest that oscillatory activity during wakefulness may be a relevant predictor of subsequent memory consolidation

    In vivo whole-cell patch-clamp recording of sensory synaptic responses of cingulate pyramidal neurons to noxious mechanical stimuli in adult mice

    Get PDF
    The anterior cingulate cortex (ACC) plays important roles in emotion, learning, memory and persistent pain. Our previous in vitro studies have demonstrated that pyramidal neurons in layer II/III of the adult mouse ACC can be characterized into three types: regular spiking (RS), intermediate (IM) and intrinsic bursting (IB) cells, according to their action potential (AP) firing patterns. However, no in vivo information is available for the intrinsic properties and sensory responses of ACC neurons of adult mice. Here, we performed in vivo whole-cell patch-clamp recordings from pyramidal neurons in adult mice ACC under urethane anesthetized conditions. First, we classified the intrinsic properties and analyzed their slow oscillations. The population ratios of RS, IM and IB cells were 10, 62 and 28%, respectively. The mean spontaneous APs frequency of IB cells was significantly greater than those of RS and IM cells, while the slow oscillations were similar among ACC neurons. Peripheral noxious pinch stimuli induced evoked spike responses in all three types of ACC neurons. Interestingly, IB cells showed significantly greater firing frequencies than RS and IM cells. In contrast, non-noxious brush did not induce any significant response. Our studies provide the first in vivo characterization of ACC neurons in adult mice, and demonstrate that ACC neurons are indeed nociceptive. These findings support the critical roles of ACC in nociception, from mice to humans

    Enhancement of presynaptic glutamate release and persistent inflammatory pain by increasing neuronal cAMP in the anterior cingulate cortex

    Get PDF
    Both presynaptic and postsynaptic alterations are associated with plastic changes of brain circuits, such as learning and memory, drug addiction and chronic pain. However, the dissection of the relative contributions of pre- and postsynaptic components to brain functions is difficult. We have previously shown peripheral inflammation caused both presynaptic and postsynaptic changes and calcium-stimulated cyclic AMP (cAMP) pathway in the anterior cingulate cortex (ACC) is critical in the synaptic plasticity and behavioral sensitization to pain. It remains to be elucidated whether presynaptic or postsynaptic modulation by cAMP in the ACC could be sufficient for enhancing inflammatory pain. In order to address this question, we took advantage of a novel transgenic mouse model, heterologously expressing an Aplysia octopamine receptor (Ap oa1). This receptor is G protein-coupled and selectively activates the cAMP pathway. We found that activation of Ap oa1 by octopamine enhanced glutamatergic synaptic transmission in the ACC by increasing presynaptic glutamate release in vitro. Bilateral microinjection of octopamine into the ACC significantly facilitated behavioral responses to inflammatory pain but not acute pain. The present study provides the first evidence linking enhanced presynaptic glutamate release in the ACC to behavioral sensitization caused by peripheral inflammation

    Involvement of fast-spiking cells in ictal sequences during spontaneous seizures in rats with chronic temporal lobe epilepsy

    Get PDF
    Epileptic seizures represent altered neuronal network dynamics, but the temporal evolution and cellular substrates of the neuronal activity patterns associated with spontaneous seizures are not fully understood. We used simultaneous recordings from multiple neurons in the hippocampus and neocortex of rats with chronic temporal lobe epilepsy to demonstrate that subsets of cells discharge in a highly stereotypical sequential pattern during ictal events, and that these stereotypical patterns were reproducible across consecutive seizures. In contrast to the canonical view that principal cell discharges dominate ictal events, the ictal sequences were predominantly composed of fast-spiking, putative inhibitory neurons, which displayed unusually strong coupling to local field potential even before seizures. The temporal evolution of activity was characterized by unique dynamics where the most correlated neuronal pairs before seizure onset displayed the largest increases in correlation strength during the seizures. These results demonstrate the selective involvement of fast spiking interneurons in structured temporal sequences during spontaneous ictal events in hippocampal and neocortical circuits in experimental models of chronic temporal lobe epilepsy

    Hot receptors in the brain

    No full text
    Abstract Two major approaches have been employed for the development of novel drugs to treat chronic pain. The most traditional approach identifies molecules involved in pain as potential therapeutic targets and has focused mainly on the periphery and spinal cord. A more recent approach identifies molecules that are involved in long-term plasticity. Drugs developed through the latter approach are predicted to treat chronic, but not physiological or acute, pain. The TRPV1 (transient receptor potential vanilloid-1) receptor is involved in nociceptive processing, and is a candidate therapeutic target for pain. While most research on TRPV1 receptors has been conducted at the level of the spinal cord and peripheral structures, considerably less research has focused on supraspinal structures. This short paper summarizes progress made on TRPV1 receptors, and reviews research on the expression and function of TRPV1 receptors in supraspinal structures. We suggest that the TRPV1 receptor may be involved in pain processing in higher brain structures, such as the anterior cingulate cortex. In addition, some regions of the brain utilize the TRPV1 receptor for functions apparently unrelated to pain.</p

    Involvement of fast-spiking cells in ictal sequences during spontaneous seizures in rats with chronic temporal lobe epilepsy

    No full text
    See Lenck-Santini (doi:10.1093/awx205) for a scientific commentary on this article. Epileptic seizures represent altered neuronal network dynamics, but the temporal evolution and cellular substrates of the neuronal activity patterns associated with spontaneous seizures are not fully understood. We used simultaneous recordings from multiple neurons in the hippocampus and neocortex of rats with chronic temporal lobe epilepsy to demonstrate that subsets of cells discharge in a highly stereotypical sequential pattern during ictal events, and that these stereotypical patterns were reproducible across consecutive seizures. In contrast to the canonical view that principal cell discharges dominate ictal events, the ictal sequences were predominantly composed of fast-spiking, putative inhibitory neurons, which displayed unusually strong coupling to local field potential even before seizures. The temporal evolution of activity was characterized by unique dynamics where the most correlated neuronal pairs before seizure onset displayed the largest increases in correlation strength during the seizures. These results demonstrate the selective involvement of fast spiking interneurons in structured temporal sequences during spontaneous ictal events in hippocampal and neocortical circuits in experimental models of chronic temporal lobe epilepsy.status: publishe
    corecore