57 research outputs found

    Dental plaque as a biofilm and a microbial community – implications for health and disease

    Get PDF
    Dental plaque is a structurally- and functionally-organized biofilm. Plaque forms in an ordered way and has a diverse microbial composition that, in health, remains relatively stable over time (microbial homeostasis). The predominant species from diseased sites are different from those found in healthy sites, although the putative pathogens can often be detected in low numbers at normal sites. In dental caries, there is a shift toward community dominance by acidogenic and acid-tolerating species such as mutans streptococci and lactobacilli, although other species with relevant traits may be involved. Strategies to control caries could include inhibition of biofilm development (e.g. prevention of attachment of cariogenic bacteria, manipulation of cell signaling mechanisms, delivery of effective antimicrobials, etc.), or enhancement of the host defenses. Additionally, these more conventional approaches could be augmented by interference with the factors that enable the cariogenic bacteria to escape from the normal homeostatic mechanisms that restrict their growth in plaque and out compete the organisms associated with health. Evidence suggests that regular conditions of low pH in plaque select for mutans streptococci and lactobacilli. Therefore, the suppression of sugar catabolism and acid production by the use of metabolic inhibitors and non-fermentable artificial sweeteners in snacks, or the stimulation of saliva flow, could assist in the maintenance of homeostasis in plaque. Arguments will be presented that an appreciation of ecological principles will enable a more holistic approach to be taken in caries control

    A randomised clinical study to determine the effect of a toothpaste containing enzymes and proteins on plaque oral microbiome ecology

    Get PDF
    The numerous species that make up the oral microbiome are now understood to play a key role in establishment and maintenance of oral health. The ability to taxonomically identify community members at the species level is important to elucidating its diversity and association to health and disease. We report the overall ecological effects of using a toothpaste containing enzymes and proteins compared to a control toothpaste on the plaque microbiome. The results reported here demonstrate that a toothpaste containing enzymes and proteins can augment natural salivary defences to promote an overall community shift resulting in an increase in bacteria associated with gum health and a concomitant decrease in those associated with periodontal disease. Statistical analysis shows significant increases in 12 taxa associated with gum health including Neisseria spp. and a significant decrease in 10 taxa associated with periodontal disease including Treponema spp. The results demonstrate that a toothpaste containing enzymes and proteins can significantly shift the ecology of the oral microbiome (at species level) resulting in a community with a stronger association to health

    Identification of Dipeptidyl-Peptidase (DPP)5 and DPP7 in Porphyromonas endodontalis, Distinct from Those in Porphyromonas gingivalis

    Get PDF
    Dipeptidyl peptidases (DPPs) that liberate dipeptides from the N-terminal end of oligopeptides are crucial for the growth of Porphyromonas species, anaerobic asaccharolytic gram negative rods that utilize amino acids as energy sources. Porphyromonas endodontalis is a causative agent of periapical lesions with acute symptoms and Asp/Glu-specific DPP11 has been solely characterized in this organism. In this study, we identified and characterized two P. endodontalis DPPs, DPP5 and DPP7. Cell-associated DPP activity toward Lys-Ala-4-methylcoumaryl-7- amide (MCA) was prominent in P. endodontalis ATCC 35406 as compared with the Porphyromonas gingivalis strains ATCC 33277, 16-1, HW24D1, ATCC 49417, W83, W50, and HNA99. The level of hydrolysis of Leu-Asp-MCA by DPP11, Gly- Pro-MCA by DPP4, and Met-Leu-MCA was also higher than in the P. gingivalis strains. MER236725 and MER278904 are P. endodontalis proteins belong to the S9- and S46-family peptidases, respectively. Recombinant MER236725 exhibited enzymatic properties including substrate specificity, and salt- and pH-dependence similar to P. gingivalis DPP5 belonging to the S9 family. However, the kcat/Km figure (194 mM21?sec21) for the most potent substrate (Lys-Ala-MCA) was 18.4-fold higher as compared to the P. gingivalis entity (10.5 mM21?sec21). In addition, P. endodontalis DPP5 mRNA and protein contents were increased several fold as compared with those in P. gingivalis. Recombinant MER278904 preferentially hydrolyzed Met-Leu-MCA and exhibited a substrate specificity similar to P. gingivalis DPP7 belonging to the S46 family. In accord with the deduced molecular mass of 818 amino acids, a 105-kDa band was immunologically detected, indicating that P. endodontalis DPP7 is an exceptionally large molecule in the DPP7/DPP11/S46 peptidase family. The enhancement of four DPP activities was conclusively demonstrated in P. endodontalis, and remarkable Lys-Ala-MCAhydrolysis was achieved by qualitative and quantitative potentiation of the DPP5 molecule

    Prevalence of Peptostreptococcus micros morphotypes in patients with adult periodontitis

    No full text
    The prevalence of the smooth and rough colonial morphotypes of Peptostreptococcus micros was examined with culture technique in 123 patients with adult periodontitis (age 24-68 years). Of all subgingival samples, 91% contained the smooth morphotype of P. micros. The smooth morphotype constituted a mean percentage of the total anaerobic viable biota of 6.0%, with a range of 0.02-35.7%. Of these samples, 49% contained colonies of the rough morphotype as well, with a mean percentage of the total anaerobic viable biota of 2.3% (range 0.01-16.2%). None of the samples contained only the rough morphotype. The total percentage of P. micros varied from 0.02-35.71% with a mean of 7.2%. No correlation was found between the prevalence of both morphotypes of P. micros and the age of the subjects or with loss of attachment or pocket depth

    Prevalence of Peptostreptococcus micros morphotypes in patients with adult periodontitis

    No full text
    The prevalence of the smooth and rough colonial morphotypes of Peptostreptococcus micros was examined with culture technique in 123 patients with adult periodontitis (age 24-68 years). Of all subgingival samples, 91% contained the smooth morphotype of P. micros. The smooth morphotype constituted a mean percentage of the total anaerobic viable biota of 6.0%, with a range of 0.02-35.7%. Of these samples, 49% contained colonies of the rough morphotype as well, with a mean percentage of the total anaerobic viable biota of 2.3% (range 0.01-16.2%). None of the samples contained only the rough morphotype. The total percentage of P. micros varied from 0.02-35.71% with a mean of 7.2%. No correlation was found between the prevalence of both morphotypes of P. micros and the age of the subjects or with loss of attachment or pocket depth

    Genetic relatedness between oral and intestinal isolates of Porphyromonas endodontalis by analysis of random amplified polymorphic DNA

    No full text
    Genomic fingerprints from the DNA of 27 strains of Porphyromonas endodontalis from diverse clinical acid geographic origins were generated as random amplified polymorphic DNA (RAPD) using the technique of PCR amplification with a single primer of arbitrary sequence. Cluster analysis of the combined RAPD data obtained with three selected 9- or 10-mer-long primers identified 25 distinct RAPD types which clustered as three main groups identifying three genogroups. Genogroups I and II included exclusively P. endodontalis isolates of oral origin, while 7/9 human intestinal strains of genogroup III which linked at a similarity level of 52% constituted the most homogeneous group in our study. Genotypic diversity within P. endodontalis, as shown by RAPD analysis, suggests that the taxon is composed of two oral genogroups and one intestinal genogroup. This hypothesis remains to be confirmed. (C) Elsevier, Paris.1501616
    corecore