13 research outputs found

    Practical robustness evaluation in radiotherapy - A photon and proton-proof alternative to PTV-based plan evaluation

    Get PDF
    Background and purpose: A planning target volume (PTV) in photon treatments aims to ensure that the clinical target volume (CTV) receives adequate dose despite treatment uncertainties. The underlying static dose cloud approximation (the assumption that the dose distribution is invariant to errors) is problematic in intensity modulated proton treatments where range errors should be taken into account as well. The purpose of this work is to introduce a robustness evaluation method that is applicable to photon and proton treatments and is consistent with (historic) PTV-based treatment plan evaluations. Materials and methods: The limitation of the static dose cloud approximation was solved in a multi-scenario simulation by explicitly calculating doses for various treatment scenarios that describe possible errors in the treatment course. Setup errors were the same as the CTV-PTV margin and the underlying theory of 3D probability density distributions was extended to 4D to include range errors, maintaining a 90% confidence level. Scenario dose distributions were reduced to voxel-wise minimum and maximum dose distributions; the first to evaluate CTV coverage and the second for hot spots. Acceptance criteria for CTV D98 and D2 were calibrated against PTV-based criteria from historic photon treatment plans. Results: CTV D98 in worst case scenario dose and voxel-wise minimum dose showed a very strong correlation with scenario average D98 (R-2 > 0.99). The voxel-wise minimum dose visualised CTV dose conformity and coverage in 3D in agreement with PTV-based evaluation in photon therapy. Criteria for CTV D98 and D2 of the voxel-wise minimum and maximum dose showed very strong correlations to PTV D98 and D2 (R-2 > 0.99) and on average needed corrections of -0.9% and +2.3%, respectively. Conclusions: A practical approach to robustness evaluation was provided and clinically implemented for PTV-less photon and proton treatment planning, consistent with PTV evaluations but without its static dose cloud approximation. (C) 2019 The Authors. Published by Elsevier B.V

    Trade-offs between mobility restrictions and transmission of SARS-CoV-2

    Get PDF
    In their response to the COVID-19 outbreak, governments face the dilemma to balance public health and economy. Mobility plays a central role in this dilemma because the movement of people enables both economic activity and virus spread. We use mobility data in the form of counts of travellers between regions, to extend the often-used SEIR models to include mobility between regions. We quantify the trade-off between mobility and infection spread in terms of a single parameter, to be chosen by policy makers, and propose strategies for restricting mobility so that the restrictions are minimal while the infection spread is effectively limited. We consider restrictions where the country is divided into regions, and study scenarios where mobility is allowed within these regions, and disallowed between them. We propose heuristic methods to approximate optimal choices for these regions. We evaluate the obtained restrictions based on our trade-off. The results show that our methods are especially effective when the infections are highly concentrated, e.g. around a few municipalities, as resulting from superspreading events that play an important role in the spread of COVID-19. We demonstrate our method in the example of the Netherlands. The results apply more broadly when mobility data are available

    Trade-offs between mobility restrictions and transmission of SARS-CoV-2

    Get PDF
    In their response to the COVID-19 outbreak, governments face the dilemma to balance public health and economy. Mobility plays a central role in this dilemma because the movement of people enables both economic activity and virus spread. We use mobility data in the form of counts of travellers between regions, to extend the often-used SEIR models to include mobility between regions. We quantify the trade-off between mobility and infection spread in terms of a single parameter, to be chosen by policy makers, and propose strategies for restricting mobility so that the restrictions are minimal while the infection spread is effectively limited. We consider restrictions where the country is divided into regions, and study scenarios where mobility is allowed within these regions, and disallowed between them. We propose heuristic methods to approximate optimal choices for these regions. We evaluate the obtained restrictions based on our trade-off. The results show that our methods are especially effective when the infections are highly concentrated, e.g. around a few municipalities, as resulting from superspreading events that play an important role in the spread of COVID-19. We demonstrate our method in the example of the Netherlands. The results apply more broadly when mobility data are available

    Modeling, fabrication and characterization of resonant piezoelectric nano mechanical systems for high resolution chemical sensors

    No full text
    Les MEMS et NEMS résonants sont d'excellents candidats pour la réalisation de systèmes de détection de gaz haute résolution et faible couts ayant des applications dans les domaines de la sécurité, la défense, l'environnement et la santé. Cependant, la question du choix des techniques de transduction est toujours largement débattue. La transduction piézoélectrique pourrait être avantageusement exploitée mais elle est encore peu connue à l'échelle nanométrique. L'objectif de cette thèse est donc de progresser vers la réalisation de capteur de gaz à haute résolution à l'aide résonateurs à base de micro / nano poutres piézoélectriques en couvrant la chaîne de prototypage complète depuis les techniques de dépôt des matériaux jusqu'à l'expérience de preuve de principe de mesure de gaz. Pour cela, notre première contribution concerne la modélisation analytique des performances et l'optimisation, design et système, d'un capteur de gaz à base de poutres résonantes piézoélectriques. En particulier, nous démontrons que la diminution de l'épaisseur du film piézoélectrique actif sous la barre des 100 nm permet d'atteindre les meilleures performances. La deuxième contribution concerne la fabrication, la caractérisation et la démonstration des performances capteur de poutres résonantes de 80 μm de long exploitant un film piézoélectrique en AlN de 50 nm d'épais. Ainsi nous avons démontré expérimentalement la stabilité fréquentielle exceptionnelle de ces dispositifs atteignant des déviations standard de l'ordre de 〖10〗^(-8), au niveau de l’état de l'art. Ainsi, ils permettent la détection de vapeurs Di -Methyl -méthyl- phosphonates, un simulateur de gaz sarin, avec des concentrations aussi faibles que 10 ppb. Bien que le niveau d'intégration de notre système de détection ne soit pas suffisant, ces résultats prouvent le fort potentiel de ces résonateurs cantilever piézoélectriques pour un développement industriel futur.Resonant MEMS and NEMS are excellent candidate for the realization of low cost and high resolution gas sensing systems that have several applications in security, defense, and environment and health care domains. However, the question of the transduction technique used to couple micro or nano scale signals to the macro scale is still a key issue. Piezoelectric transduction can be advantageously exploited but has been rarely studied at the nano-scale. The objective of this PhD is thus to progress toward the realization of high-resolution gas sensor using piezoelectric micro/nano cantilevers resonators and cover the whole prototyping chain from device fabrication to proof of principle experiment. Our first contribution in this research relates the analytical modeling of the sensing performance and the system and design optimization. In particular we demonstrate that decreasing the piezoelectric active film thickness below 100 nm is particularly beneficial. The second contribution relates the fabrication, characterization and demonstration of the high sensing performances of 80 μm long cantilevers embedding a 50 nm thick piezoelectric AlN film for transduction. These devices exhibit state of the art performances in terms of resonance frequency deviation down to the 〖10〗^(-8) range. They allow thus the detection of Di-Methyl-Methyl-Phosphonate vapors, a sarin gas simulant, with concentration as low as 10 ppb. Although the level of integration of our sensing system is not sufficient for real life application, these results prove the high potential of these piezoelectric cantilever resonators for future industrial development

    Supplementary material from "Trade-offs between mobility restrictions and transmission of SARS-CoV-2"

    No full text
    In their response to the COVID-19 outbreak, governments face the dilemma to balance public health and economy. Mobility plays a central role in this dilemma because the movement of people enables both economic activity and virus spread. We use mobility data in the form of counts of travellers between regions, to extend the often-used SEIR models to include mobility between regions. We quantify the trade-off between mobility and infection spread in terms of a single parameter, to be chosen by policy makers, and propose strategies for restricting mobility so that the restrictions are minimal while the infection spread is effectively limited. We consider restrictions where the country is divided into regions, and study scenarios where mobility is allowed within these regions, and disallowed between them. We propose heuristic methods to approximate optimal choices for these regions. We evaluate the obtained restrictions based on our trade-off. The results show that our methods are especially effective when the infections are highly concentrated, e.g., around a few municipalities, as resulting from superspreading events that play an important role in the spread of COVID-19. We demonstrate our method in the example of the Netherlands. The results apply more broadly when mobility data is available
    corecore