600 research outputs found

    Molecular Beams

    Get PDF
    Contains reports on five research projects

    NON-DESTRUCTIVE RADIOCARBON DATING: NATURALLY MUMMIFIED INFANT BUNDLE FROM SW TEXAS

    Get PDF
    Plasma oxidation was used to obtain radiocarbon dates on six different materials from a naturally mummified baby bundle from the Lower Pecos River region of southwest Texas. This bundle was selected because it was thought to represent a single event and would illustrate the accuracy and precision of the plasma oxidation method. Five of the materials were clearly components of the original bundle with 13 dates combined to yield a weighted average of 2135 {+-} 11 B.P. Six dates from a wooden stick of Desert Ash averaged 939 {+-} 14 B.P., indicating that this artifact was not part of the original burial. Plasma oxidation is shown to be a virtually non-destructive alternative to combustion. Because only sub-milligram amounts of material are removed from an artifact over its exposed surface, no visible change in fragile materials has been observed, even under magnification. The method is best applied when natural organic contamination is unlikely and serious consideration of this issue is needed in all cases. If organic contamination is present, it will have to be removed before plasma oxidation to obtain accurate radiocarbon dates

    Effects of the Mutant TP53 Reactivator APR-246 on Therapeutic Sensitivity of Pancreatic Cancer Cells in the Presence and Absence of WT-TP53

    Get PDF
    The TP53 tumor suppressor is mutated in ~75% of pancreatic cancers. The mutant TP53 protein in pancreatic ductal adenocarcinomas (PDAC) promotes tumor growth and metastasis. Attempts have been made to develop molecules that restore at least some of the properties of wildtype (WT) TP53. APR-246 is one such molecule, and it is referred to as a mutant TP53 reactivator. To understand the potential of APR-246 to sensitize PDAC cells to chemotherapy, we introduced a vector encoding WT-TP53 into two PDAC cell lines, one lacking the expression of TP53 (PANC-28) and one with a gain-of-function (GOF) mutant TP53 (MIA-PaCa-2). APR-246 increased drug sensitivity in the cells containing either a WT or mutant TP53 protein with GOF activity, but not in cells that lacked TP53. The introduction of WT-T53 into PANC-28 cells increased their sensitivity to the TP53 reactivator, chemotherapeutic drugs, and signal transduction inhibitors. The addition of WT-TP53 to PDAC cells with GOF TP53 also increased their sensitivity to the drugs and therapeutics, indicating that APR-246 could function in cells with WT-TP53 and GOF TP53. These results highlight the importance of knowledge of the type of TP53 mutation that is present in cancer patients before the administration of drugs which function through the reactivation of TP53

    Regulation and targeting of antiapoptotic XIAP in acute myeloid leukemia

    Get PDF
    : XIAP is a member of the inhibitors-of-apoptosis family of proteins, which inhibit caspases and block cell death, with prognostic importance in AML. Here we demonstrate that cytokines regulate the expression of XIAP in leukemic cell lines and primary AML blasts. Inhibition of phosphatidylinositol-3 kinase (PI3K) with LY294002 and of the mitogen-activated protein kinase (MAPK) cascade by PD98059 resulted in decreased XIAP levels (34+/-8.7 and 23+/-5.7%, respectively). We then generated OCI-AML3 cells with constitutively phosphorylated Akt (p473-Akt) by retroviral gene transfer. Neither these nor Akt inhibitor-treated OCI-AML3 cells showed changes in XIAP levels, suggesting that XIAP expression is regulated by PI3K downstream effectors other than Akt. The induction of XIAP expression by cytokines through PI3K/MAPK pathways is consistent with its role in cell survival. Exposure of leukemic cells to chemotherapeutic agents decreased XIAP protein levels by caspase-dependent XIAP cleavage. Targeting XIAP by XIAP antisense oligonucleotide resulted in downregulation of XIAP, activation of caspases and cell death, and sensitized HL-60 cells to Ara-C. Our results suggest that XIAP is regulated by cytokines through PI3K, and to a lesser degree through MAPK pathways. Selective downregulation of XIAP expression might be of therapeutic benefit to leukemic patients

    Targeting the leukemic stem cell: the Holy Grail of leukemia therapy

    Get PDF
    Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological properties have been elucidated, including their distinct replicative properties, cell surface phenotypes, their increased resistance to chemo-therapeutic drugs and the involvement of growthpromoting chromosomal translocations. Of particular importance is their ability to transfer malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at the level of stem cell, and chronic myeloid leukemia is also a stem cell disease. In this review, we will evaluate the main characteristics of LSCs elucidated in several well-documented leukemias. In addition, we will discuss points of therapeutic intervention. Promising therapeutic approaches include the targeting of key signal transduction pathways (for example, PI3K, Rac and Wnt) with smallmolecule inhibitors and specific cell surface molecules (for example, CD33, CD44 and CD123), with effective cytotoxic antibodies. Also, statins, which are already widely therapeutically used for a variety of diseases, show potential in targeting LSCs. In addition, drugs that inhibit ATP-binding cassette transporter proteins are being extensively studied, as they are important in drug resistance â a frequent characteristic of LSCs. Although the specific targeting of LSCs is a relatively new field, it is a highly promising battleground that may reveal the Holy Grail of cancer therapy. Originally published Leukemia, Vol. 23, No. 1, Jan 200

    Targeting GSK3 and Associated Signaling Pathways Involved in Cancer

    Get PDF
    Glycogen synthase kinase 3 (GSK-3) is a serine/threonine (S/T) protein kinase. Although GSK-3 originally was identified to have functions in regulation of glycogen synthase, it was subsequently determined to have roles in multiple normal biochemical processes as well as various disease conditions. GSK-3 is sometimes referred to as a moonlighting protein due to the multiple substrates and processes which it controls. Frequently, when GSK-3 phosphorylates proteins, they are targeted for degradation. GSK-3 is often considered a component of the PI3K/PTEN/AKT/GSK-3/mTORC1 pathway as GSK-3 is frequently phosphorylated by AKT which regulates its inactivation. AKT is often active in human cancer and hence, GSK-3 is often inactivated. Moreover, GSK-3 also interacts with WNT/\u3b2-catenin signaling and \u3b2-catenin and other proteins in this pathway are targets of GSK-3. GSK-3 can modify NF-\u3baB activity which is often expressed at high levels in cancer cells. Multiple pharmaceutical companies developed small molecule inhibitors to suppress GSK-3 activity. In addition, various natural products will modify GSK-3 activity. This review will focus on the effects of small molecule inhibitors and natural products on GSK-3 activity and provide examples where these compounds were effective in suppressing cancer growth

    Metabonomics and Intensive Care

    Get PDF
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency medicine 2016. Other selected articles can be found online at http://www.biomedcentral.com/collections/annualupdate2016. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901
    corecore