9,724 research outputs found

    Pentazole and Ammonium Pentazolate: Crystalline Hydro-Nitrogens at High Pressure

    Full text link
    Two new crystalline compounds, pentazole (N_{5}H) and ammonium pentazolate (NH_{4})(N_{5}), both featuring cyclo-{\rm N_{5}^{-}} are discovered using first principles evolutionary search of the nitrogen-rich portion of the hydro-nitrogen binary phase diagram (N_{x}H_{y}, x\geqy) at high pressures. Both crystals consist of the pentazolate N_{5}^{-} anion and ammonium NH_{4}^{+} or hydrogen H^{+} cations. These two crystals are predicted to be thermodynamically stable at pressures above 30 GPa for (NH_{4})(N_{5}) and 50 GPa for pentazole N_{5}H. The chemical transformation of ammonium azide (NH_{4})(N_{3}) mixed with di-nitrogen (N_{2}) to ammonium pentazolate (NH_{4})(N_{5}) is predicted to become energetically favorable above 12.5 GPa. To assist in identification of newly synthesized compounds in future experiments, the Raman spectra of both crystals are calculated and mode assignments are made as a function of pressure up to 75 GPa

    Mineralogy of the Ibitira eucrite and comparison with other eucrites and lunar samples

    Get PDF
    Single crystal X-ray and energy dispersive electron-probe techniques are used to study the mineralogy and track history of Ibitira. The mineralogical features of the Ibitire eucrite are described and examined in relation to data for other eucrites and howardites and lunar samples. The processes which transformed a presumed igneous texture into a more complex one are discussed

    Stabilized gas laser oscillators Final report, 24 Jun. 1964 - 21 Jun. 1966

    Get PDF
    Phase-locking scheme for frequency-stabilized gas laser oscillator

    Gamma Ray Bursts in the Era of Rapid Followup

    Get PDF
    We present a status report on the study of gamma-ray bursts (GRB) in the era of rapid follow-up using the world's largest robotic optical telescopes - the 2-m Liverpool and Faulkes telescopes. Within the context of key unsolved issues in GRB physics, we describe (1) our innovative software that allows real-time automatic analysis and interpretation of GRB light curves, (2) the novel instrumentation that allows unique types of observations (in particular, early time polarisation measurements) and (3) the key science questions and discoveries to which robotic observations are ideally suited, concluding with a summary of current understanding of GRB physics provided by combining rapid optical observations with simultaneous observations at other wavelengths.Comment: 20 pages, 12 figures; Review article accepted for publication in Advances in Astronomy, special issue 'Robotic Astronomy (Hindawi Publishing Corporation)

    Novel Rubidium Poly-Nitrogen Materials at High Pressure

    Full text link
    First-principles crystal structure search is performed to predict novel rubidium poly-nitrogen materials at high pressure by varying the stoichiometry, i. e. relative quantities of the constituent rubidium and nitrogen atoms. Three compounds of high nitrogen content, RbN_{5}, RbN_{2}, and Rb_{4}N_{6}, are discovered. Rubidium pentazolate (RbN5) becomes thermodynamically stable at pressures above \unit[30]{GPa}. The charge transfer from Rb to N atoms enables aromaticity in cyclo-N_{^{_{5}}}^{-} while increasing the ionic bonding in the crystal. Rubidium pentazolate can be synthesized by compressing rubidium azide (RbN3) and nitrogen (N2) precursors above \unit[9.42]{GPa}, and its experimental discovery is aided by calculating the Raman spectrum and identifying the features attributed to N_{^{_{5}}}^{-} modes. The two other interesting compounds, RbN2 containing infinitely-long single-bonded nitrogen chains, and Rb_{4}N_{6} consisting of single-bonded N_{6} hexazine rings, become thermodynamically stable at pressures exceeding \unit[60]{GPa}. In addition to the compounds with high nitrogen content, Rb_{3}N_{3}, a new compound with 1:1 RbN stoichiometry containing bent N_{3} azides is found to exist at high pressures

    A representative sample of Be Stars I: Sample Selection, Spectral Classification and Rotational Velocities

    Get PDF
    We present a sample of 58 Be stars containing objects of spectral types O9 to B8.5 and luminosity classes III to V. We have obtained 3670 - 5070 Angstrom spectra of the sample which are used to derive spectral types and rotational velocities. We discuss the distribution of spectral types and rotational velocities obtained and conclude that there are no significant selection effects in our sample.Comment: 10 Pages, 9 Figures, Accepted for publication in A&A

    Structural and lithologic study of northern California Coast Range and Sacramento Valley, California

    Get PDF
    The author has identified the following significant results. Photgeologic examination of repetitive multispectral ERTS-1 imagery of Northern California has disclosed several systems of linear features which may be important for the interpretation of the structural history of California. They are separated from an orthogonal system of linears in the Klamath Mts. by a set of discontinuous southeast-trending linear features (the Mendocino system) which is traceable from the Pacific Coast, at Cape Mendocino, into the eastern foothills of the Sierra Nevada. Within the Sierra Nevada, the Mendocino system separates the north-trending Sierran system from a set of linears characteristic of the Modoc Plateau. With minor exception, little overlap exists among the systems which suggests a decipherable chronology and evolutionary history for the region. The San Andres system of linears appears to truncate or co-exist with most of the other systems in the northern Coast Ranges. The Mendocino system truncates the Klamath, Sierran, and Modoc systems. The Sierran system may represent fundamental and long-persisting pre-late Paleozoic zones of crustal weakness which have been reactivated from time to time. The Mendocino system was possibly developed in early Mesozoic and is important to the structural framework of Northern California
    corecore