7,922 research outputs found

    Imaging Transport Resonances in the Quantum Hall Effect

    Full text link
    We use a scanning capacitance probe to image transport in the quantum Hall system. Applying a DC bias voltage to the tip induces a ring-shaped incompressible strip (IS) in the 2D electron system (2DES) that moves with the tip. At certain tip positions, short-range disorder in the 2DES creates a quantum dot island in the IS. These islands enable resonant tunneling across the IS, enhancing its conductance by more than four orders of magnitude. The images provide a quantitative measure of disorder and suggest resonant tunneling as the primary mechanism for transport across ISs.Comment: 4 pages, 4 figures, submitted to PRL. For movies and additional infomation, see http://electron.mit.edu/scanning/; Added scale bars to images, revised discussion of figure 3, other minor change

    Jury Instructions: A Persistent Failure to Communicate

    Get PDF

    Jury Instructions: A Persistent Failure to Communicate

    Get PDF
    This article reports on an empirical study of juror comprehension of pattern jury instructions. It demonstrated that comprehension of the original instructions was poor, but that rewriting significantly improved their ability to understand and explain the meaning of the instructions. A separate study showed that jurors report that they discuss and consider the language of the instructions provided to them

    Jury Instructions: A Persistent Failure to Communicate

    Get PDF
    This article reports on an empirical study of juror comprehension of pattern jury instructions. It demonstrated that comprehension of the original instructions was poor, but that rewriting significantly improved their ability to understand and explain the meaning of the instructions. A separate study showed that jurors report that they discuss and consider the language of the instructions provided to them

    The Misprediction of emotions in Track Athletics.: Is experience the teacher of all things?

    Get PDF
    People commonly overestimate the intensity of their emotions toward future events. In other words, they display an impact bias. This research addresses the question whether people learn from their experiences and correct for the impact bias. We hypothesize that athletes display an impact bias and, counterintuitively, that increased experience with an event increases this impact bias. A field study in the context of competitive track athletics supported our hypotheses by showing that athletes clearly overestimated their emotions toward the outcome of a track event and that this impact bias was more pronounced for negative events than for positive events. Moreover, with increased athletic experience this impact bias became larger. This effect could not be explained by athletes’ forecasted emotions, but it could be explained by the emotions they actually felt following the race. The more experience athletes had with athletics, the less they felt negative emotions after unsuccessful goal attainment. These findings are discussed in relation to possible underlying emotion regulation processes

    Optimal Renormalization-Group Improvement of R(s) via the Method of Characteristics

    Get PDF
    We discuss the application of the method of characteristics to the renormalization-group equation for the perturbative QCD series within the electron-positron annihilation cross-section. We demonstrate how one such renormalization-group improvement of this series is equivalent to a closed-form summation of the first four towers of renormalization-group accessible logarithms to all orders of perturbation theory

    Gas-Liquid Nucleation in Two Dimensional System

    Get PDF
    We study the nucleation of the liquid phase from a supersaturated vapor in two dimensions (2D). Using different Monte Carlo simulation methods, we calculate the free energy barrier for nucleation, the line tension and also investigate the size and shape of the critical nucleus. The study is carried out at an intermediate level of supersaturation(away from the spinodal limit). In 2D, a large cut-off in the truncation of the Lennard-Jones (LJ) potential is required to obtain converged results, whereas low cut-off (say, 2.5σ2.5\sigma is generally sufficient in three dimensional studies, where σ\sigma is the LJ diameter) leads to a substantial error in the values of line tension, nucleation barrier and characteristics of the critical cluster. It is found that in 2D, the classical nucleation theory (CNT) fails to provide a reliable estimate of the free energy barrier. It underestimates the barrier by as much as 70% at the saturation-ratio S=1.1 (defined as S=P/PC, where PC is the coexistence pressure at reduced temperature T⋆=0.427T^{\star}= 0.427). Interestingly, CNT has been found to overestimate the nucleation free energy barrier in three dimensional (3D)systems near the triple point. In fact, the agreement with CNT is worse in 2D than in 3D. Moreover, the existing theoretical estimate of the line tension overestimates the value significantly.Comment: 24 pages, 8 figure
    • …
    corecore