103 research outputs found
Towards segmentation and spatial alignment of the human embryonic brain using deep learning for atlas-based registration
We propose an unsupervised deep learning method for atlas based registration
to achieve segmentation and spatial alignment of the embryonic brain in a
single framework. Our approach consists of two sequential networks with a
specifically designed loss function to address the challenges in 3D first
trimester ultrasound. The first part learns the affine transformation and the
second part learns the voxelwise nonrigid deformation between the target image
and the atlas. We trained this network end-to-end and validated it against a
ground truth on synthetic datasets designed to resemble the challenges present
in 3D first trimester ultrasound. The method was tested on a dataset of human
embryonic ultrasound volumes acquired at 9 weeks gestational age, which showed
alignment of the brain in some cases and gave insight in open challenges for
the proposed method. We conclude that our method is a promising approach
towards fully automated spatial alignment and segmentation of embryonic brains
in 3D ultrasound
Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort
Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene
Healthy ageing of cloned sheep
The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental longterm health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7–9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly. We also perform radiological examinations of all main joints, including the knees, the joint most affected by osteoarthritis in Dolly, and compare all health parameters to groups of 5- and 6-year-old sheep, and published reference ranges. Despite their advanced age, these clones are euglycaemic, insulin sensitive and normotensive. Importantly, we observe no clinical signs of degenerative joint disease apart from mild, or in one case moderate, osteoarthritis in some animals. Our study is the first to assess the long-term health outcomes of SCNT in large animals
Association of cord blood methylation fractions at imprinted insulin-like growth factor 2 (IGF2), plasma IGF2, and birth weight
status: publishe
Association of the MTHFR A1298C Variant with Unexplained Severe Male Infertility
The methylenetetrahydrofolate reductase (MTHFR) gene is one of the main regulatory enzymes involved in folate metabolism, DNA synthesis and remethylation reactions. The influence of MTHFR variants on male infertility is not completely understood. The objective of this study was to analyze the distribution of the MTHFR C677T and A1298C variants using PCR-Restriction Fragment Length Polymorphism (RFLP) in a case group consisting of 344 men with unexplained reduced sperm counts compared to 617 ancestry-matched fertile or normozoospermic controls. The Chi square test was used to analyze the genotype distributions of MTHFR polymorphisms. Our data indicated a lack of association of the C677T variant with infertility. However, the homozygous (C/C) A1298C polymorphism of the MTHFR gene was present at a statistically high significance in severe oligozoospermia group compared with controls (OR = 3.372, 95% confidence interval CI = 1.27–8.238; p = 0.01431). The genotype distribution of the A1298C variants showed significant deviation from the expected Hardy-Weinberg equilibrium, suggesting that purifying selection may be acting on the 1298CC genotype. Further studies are necessary to determine the influence of the environment, especially the consumption of diet folate on sperm counts of men with different MTHFR variants
Folic acid supplementation before and during pregnancy in the Newborn Epigenetics STudy (NEST)
<p>Abstract</p> <p>Background</p> <p>Folic acid (FA) added to foods during fortification is 70-85% bioavailable compared to 50% of folate occurring naturally in foods. Thus, if FA supplements also are taken during pregnancy, both mother and fetus can be exposed to FA exceeding the Institute of Medicine's recommended tolerable upper limit (TUL) of 1,000 micrograms per day (μg/d) for adult pregnant women. The primary objective is to estimate the proportion of women taking folic acid (FA) doses exceeding the TUL before and during pregnancy, and to identify correlates of high FA use.</p> <p>Methods</p> <p>During 2005-2008, pre-pregnancy and pregnancy-related data on dietary supplementation were obtained by interviewing 539 pregnant women enrolled at two obstetrics-care facilities in Durham County, North Carolina.</p> <p>Results</p> <p>Before pregnancy, 51% of women reported FA supplementation and 66% reported this supplementation during pregnancy. Before pregnancy, 11.9% (95% CI = 9.2%-14.6%) of women reported supplementation with FA doses above the TUL of 1,000 μg/day, and a similar proportion reported this intake prenatally. Before pregnancy, Caucasian women were more likely to take FA doses above the TUL (OR = 2.99; 95% = 1.28-7.00), compared to African American women, while women with chronic conditions were less likely to take FA doses above the TUL (OR = 0.48; 95%CI = 0.21-0.97). Compared to African American women, Caucasian women were also more likely to report FA intake in doses exceeding the TUL during pregnancy (OR = 5.09; 95%CI = 2.07-12.49).</p> <p>Conclusions</p> <p>Fifty-one percent of women reported some FA intake before and 66% during pregnancy, respectively, and more than one in ten women took FA supplements in doses that exceeded the TUL. Caucasian women were more likely to report high FA intake. A study is ongoing to identify possible genetic and non-genotoxic effects of these high doses.</p
Prenatal Famine and Genetic Variation Are Independently and Additively Associated with DNA Methylation at Regulatory Loci within IGF2/H19
Both the early environment and genetic variation may affect DNA methylation, which is one of the major molecular marks of the epigenome. The combined effect of these factors on a well-defined locus has not been studied to date. We evaluated the association of periconceptional exposure to the Dutch Famine of 1944–45, as an example of an early environmental exposure, and single nucleotide polymorphisms covering the genetic variation (tagging SNPs) with DNA methylation at the imprinted IGF2/H19 region, a model for an epigenetically regulated genomic region. DNA methylation was measured at five differentially methylated regions (DMRs) that regulate the imprinted status of the IGF2/H19 region. Small but consistent differences in DNA methylation were observed comparing 60 individuals with periconceptional famine exposure with unexposed same-sex siblings at all IGF2 DMRs (PBH<0.05 after adjustment for multiple testing), but not at the H19 DMR. IGF2 DMR0 methylation was associated with IGF2 SNP rs2239681 (PBH = 0.027) and INS promoter methylation with INS SNPs, including rs689, which tags the INS VNTR, suggesting a mechanism for the reported effect of the VNTR on INS expression (PBH = 3.4×10−3). Prenatal famine and genetic variation showed similar associations with IGF2/H19 methylation and their contributions were additive. They were small in absolute terms (<3%), but on average 0.5 standard deviations relative to the variation in the population. Our analyses suggest that environmental and genetic factors could have independent and additive similarly sized effects on DNA methylation at the same regulatory site
- …