1,860 research outputs found

    Hamilton Operators, Discrete Symmetries, Brute Force and SymbolicC++

    Get PDF
    To find the discrete symmetries of a Hamilton operator H^\hat H is of central importance in quantum theory. Here we describe and implement a brute force method to determine the discrete symmetries given by permutation matrices for Hamilton operators acting in a finite-dimensional Hilbert space. Spin and Fermi systems are considered as examples. A computer algebra implementation in SymbolicC++ is provided

    Hyperdeterminant and an integrable partial differential equation

    Get PDF
    We discuss an integrable partial differential equation arising from the hyperdeterminant

    Chaotic saddles in nonlinear modulational interactions in a plasma

    Full text link
    A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.Comment: Physics of Plasmas, in pres
    corecore