Hyperdeterminant and an integrable partial differential equation Willi-Hans Steeb
 International School for Scientific Computing, University of Johannesburg, Auckland Park 2006, South Africa, e-mail: steebwilli@gmail.com

Abstract. We discuss an integrable partial differential equation arising from the hyperdeterminant.

Key words: Hyperdeterminant, Legendre Transformation, Integrable Partial Differential Equation

It is well known $[1,2,3,4]$ that the Bateman equation in two dimensions

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}\left(\frac{\partial u}{\partial x_{2}}\right)^{2}+\frac{\partial^{2} u}{\partial x_{2}^{2}}\left(\frac{\partial u}{\partial x_{1}}\right)^{2}-2 \frac{\partial u}{\partial x_{1}} \frac{\partial u}{\partial x_{2}} \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}=0
$$

can be derived from the condition

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & \partial u / \partial x_{1} & \partial u / \partial x_{2} \\
\partial u / \partial x_{1} & \partial^{2} u / \partial x_{1}^{2} & \partial^{2} u / \partial x_{1} \partial x_{2} \\
\partial u / \partial x_{2} & \partial^{2} u / \partial x_{1} \partial x_{2} & \partial^{2} u / \partial x_{2}^{2}
\end{array}\right)=0
$$

It is also well known (see for example $[5,6]$) that the Bateman equation can be linearized by a Legendre transformation and the general implicit solution is given by

$$
x_{1} f\left(u\left(x_{1}, x_{2}\right)\right)+x_{2} g\left(u\left(x_{1}, x_{2}\right)\right)=c
$$

where f and g are smooth functions. This partial differential equation plays a central role in studying the integrability of partial differential equation using the Painlevé test $[5,7]$. For example the differential equation appears in the Painleve analysis of the inviscid Burgers equation, double sine-Gordan, discrete Boltzmann equation.

Here we generalize the condition given above from the determinant to the $2 \times 2 \times 2$ hyperdeterminant of a $2 \times 2 \times 2$ hypermatrix and derive the nonlinear partial differential equation and discuss its properties. The extension to $2 \times 2 \times 2 \times 2$ hyperdeterminants will be straightforward.

Cayley [8] in 1845 introduced the hyperdeterminant. Gelfand et al [9] give an in debt discussion of the hyperdeterminant. The hyperdeterminant arises as entanglement measure for three qubits [10,11,12], in black hole entropy [13]. The

Nambu-Goto action in string theory can be expressed in terms of the hyperdeterminant [14]. A computer algebra program for the hyperdeterminant is given by Steeb and Hardy [11]

Let $\epsilon_{00}=\epsilon_{11}=0, \epsilon_{01}=1, \epsilon_{10}=-1$, i.e. we consider the 2×2 matrix

$$
\epsilon=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Then the determinant of a 2×2 matrix $A_{2}=\left(a_{i j}\right)$ with $i, j=0,1$ can be defined as

$$
\operatorname{det} A_{2}:=\frac{1}{2} \sum_{i=0}^{1} \sum_{j=0}^{1} \sum_{\ell=0}^{1} \sum_{m=0}^{1} \epsilon_{i j} \epsilon_{\ell m} a_{i \ell} a_{j m} .
$$

Thus $\operatorname{det} A_{2}=a_{00} a_{11}-a_{01} a_{10}$. In analogy the hyperdeterminant of the $2 \times 2 \times 2$ array $A_{3}=\left(a_{i j k}\right)$ with $i, j, k=0,1$ is defined as
$\operatorname{Det} A_{3}:=-\frac{1}{2} \sum_{i i^{\prime}=0}^{1} \sum_{j j^{\prime}=0}^{1} \sum_{k k^{\prime}=0}^{1} \sum_{m m^{\prime}=0}^{1} \sum_{n n^{\prime}=0}^{1} \sum_{p p^{\prime}=0}^{1} \epsilon_{i i^{\prime}} \epsilon_{j j^{\prime}} \epsilon_{k k^{\prime}} \epsilon_{m m^{\prime}} \epsilon_{n n^{\prime}} \epsilon_{p p^{\prime}} a_{i j k} a_{i^{\prime} j^{\prime} m} a_{n p k^{\prime}} a_{n^{\prime} p^{\prime} m^{\prime}}$.
There are $2^{8}=256$ terms, but only 24 are nonzero. We find

$$
\begin{aligned}
\operatorname{Det} A_{3}= & a_{000}^{2} a_{111}^{2}+a_{001}^{2} a_{110}^{2}+a_{001}^{2} a_{101}^{2}+a_{100} a_{011}^{2} \\
& -2\left(a_{000} a_{001} a_{110} a_{111}+a_{000} a_{010} a_{101} a_{111}\right. \\
& +a_{000} a_{100} a_{011} a_{111}+a_{001} a_{010} a_{101} a_{110} \\
& \left.+a_{001} a_{100} a_{011} a_{110}+a_{010} a_{100} a_{011} a_{101}\right) \\
& +4\left(a_{000} a_{011} a_{101} a_{110}+a_{001} a_{010} a_{100} a_{111}\right) .
\end{aligned}
$$

The hyperdeterminant $\operatorname{Det}(A)$ of the three-dimensional array $A_{3}=\left(a_{i j k}\right) \in \mathbb{R}^{2 \times 2 \times 2}$ can also be calculated as follows

$$
\begin{aligned}
\operatorname{Det}\left(A_{3}\right)= & \frac{1}{4}\left(\operatorname{det}\left(\left(\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right)+\left(\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right)\right)\right. \\
& \left.-\operatorname{det}\left(\left(\begin{array}{cc}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right)-\left(\begin{array}{cc}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right)\right)\right)^{2} \\
& -4 \operatorname{det}\left(\begin{array}{ll}
a_{000} & a_{010} \\
a_{001} & a_{011}
\end{array}\right) \operatorname{det}\left(\begin{array}{ll}
a_{100} & a_{110} \\
a_{101} & a_{111}
\end{array}\right) .
\end{aligned}
$$

If only one of the coefficients $a_{i j k}$ is nonzero we find that the hyperdeterminant of A_{3} is 0 .

Given a $2 \times 2 \times 2$ hypermatrix $A_{3}=\left(a_{j k \ell}\right), j, k, \ell=0,1$ and the 2×2 matrix

$$
S=\left(\begin{array}{ll}
s_{00} & s_{01} \\
s_{10} & s_{11}
\end{array}\right) .
$$

The multiplication $A_{3} S$ which is again a 2×2 hypermatrix is defined by

$$
\left(A_{3} S\right)_{j k \ell}:=\sum_{r=0}^{1} a_{j k r} s_{r \ell}
$$

If $\operatorname{det}(S)=1$, i.e. $S \in S L(2, \mathbb{C})$, then $\operatorname{Det}\left(A_{3} S\right)=\operatorname{Det}\left(A_{3}\right)$.
In analogy with the Bateman equation we set

$$
\begin{aligned}
a_{000} \mapsto 0, & a_{001} \mapsto \frac{\partial u}{\partial x_{3}}, & a_{010} \mapsto \frac{\partial u}{\partial x_{2}}, & a_{100} \mapsto \frac{\partial u}{\partial x_{1}}, \\
a_{011} \mapsto \frac{\partial^{2} u}{\partial x_{2} \partial x_{3}}, & a_{101} \mapsto \frac{\partial^{2} u}{\partial x_{1} \partial x_{3}}, & a_{110} \mapsto \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}, & a_{111} \mapsto \frac{\partial^{3} u}{\partial x_{1} \partial x_{2} \partial x_{3}}
\end{aligned}
$$

and obtain the nonlinear partial differential equation

$$
\begin{aligned}
& \left(\frac{\partial u}{\partial x_{1}}\right)^{2}\left(\frac{\partial^{2} u}{\partial x_{2} \partial x_{3}}\right)^{2}+\left(\frac{\partial u}{\partial x_{2}}\right)^{2}\left(\frac{\partial^{2} u}{\partial x_{1} \partial x_{3}}\right)^{2}+\left(\frac{\partial u}{\partial x_{3}}\right)^{2}\left(\frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}\right)^{2} \\
& -2\left(\frac{\partial u}{\partial x_{1}} \frac{\partial u}{\partial x_{2}} \frac{\partial^{2} u}{\partial x_{1} \partial x_{3}} \frac{\partial^{2} u}{\partial x_{2} \partial x_{3}}+\frac{\partial u}{\partial x_{1}} \frac{\partial u}{\partial x_{3}} \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} u}{\partial x_{2} \partial x_{3}}+\frac{\partial u}{\partial x_{2}} \frac{\partial u}{\partial x_{3}} \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} u}{\partial x_{1} \partial x_{3}}\right) \\
& +4 \frac{\partial u}{\partial x_{1}} \frac{\partial u}{\partial x_{2}} \frac{\partial u}{\partial x_{3}} \frac{\partial^{3} u}{\partial x_{1} \partial x_{2} \partial x_{3}}=0
\end{aligned}
$$

The partial differential equation is invariant under the permutations of x_{1}, x_{2}, x_{3}. The group of symmetries is $S L(3, \mathbb{R})$. The equation can also be linearized by a Legendre transformation.
[1] Fairlie D. B., Govaerts J. and Morzov A., Universal field equations and covariant solutions, Nuclear Phys. B 373 (1992) 214-232.
[2] Fairlie D. B., Integrable systems in higher dimensions, Prog. Theor. Phys. Supp. 1995, N 118, 309-327.
[3] Derjagin V. and Leznov A., Geometrical symmetries of the universal equation, Nonlinear Mathematical Physics, 2 (1995), 46-50.
[4] Euler N., Lindblom O., Euler M. and Persson L.-E., The higher dimensional Bateman equation and Painlevé analysis of nonintegrable wave equations, Symmetry in Nonlinear Mathematical Physics, 1 (1997), 185-192.
[5] Weiss J., The sine-Gordon equations: Complete and partial integrability, J. Math. Phys. 25 (1984) 226-2235.
[6] Steeb W.-H., Problems and Solution in Theoretical and Mathematical Physics, Volume I, 3rd edition, World Scientific, Singapore (2010).
[7] Steeb W.-H. and Euler N., Nonlinear Evolution Equations and Painlevé Test, World Scientific, Singapore (1988).
[8] Cayley A., On the theory of linear transformations, Camb. Math. J. 4 (1845) 193-209.
[9] Gelfand I. M., Kapranov M. M. and Zelevinsky A., Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Basel (2008).
[10] Coffman V., Kundu J. and Wooters W., Distributed Entanglement, Phys. Rev. A 61052306 (2000).
[11] Steeb W.-H. and Hardy Y., Quantum Mechanics using Computer Algebra, World Scientific, Singapore (2010).
[12] Steeb W.-H. and Hardy Y., Problems and Solutions in Quantum Computing and Quantum Information, 3rd edition, World Scientific, Singapore (2011).
[13] Duff M., String triality, black hole entropy, and Cayley's hyperdeterminant, Phys. Rev. D 76 (2007) 025017.
[14] Hitoshi Nishino and Subhash Raipoot, Nambu-Goto actions and Cayley's hyperdeterminant, Phys. Lett. B 652 (2007), 135-140.

