8 research outputs found

    Mass and UV-visible spectral fingerprints of dissolved organic matter: sources and reactivity

    Get PDF
    Advanced analytical techniques have revealed a high degree of complexity in the chemical makeup of dissolved organic matter (DOM). This has opened the door for a deeper understanding of the role of DOM in the aquatic environment. However, the expense, analytical cost, and challenges related to interpretation of the large datasets generated by these methods limit their widespread application. Optical methods, such as absorption and fluorescence spectroscopy are relatively inexpensive and easy to implement, but lack the detailed information available in more advanced methods. We were able to directly link the analysis of absorption spectra to the mass spectra of DOM using an in-line detector system coupled to multivariate data analysis. Monthly samples were taken from three river mouths in Sweden for one year. One subset of samples was exposed to photochemical degradation and another subset was exposed to long-term (4 months) biological degradation. A principle component analysis was performed on the coupled absorption-mass spectra data. Loading spectra for each principle component show distinct fingerprints for both reactivity (i.e. photochemical, biological degradation) and source (i.e. catchment land cover, temperature, hydrology). The fingerprints reveal mass-to-charge values that contribute to optical signals and characteristics seen in past studies, and emphasise the difficulties in interpreting changes in bulk CDOM characteristics resulting from multiple catchment processes. The approach provides a potential simple method for using optical indicators as tracers for more complex chemical processes both with regards to source material for DOM and the past reactive processing of DOM

    The Molecular Fingerprint of Fluorescent Natural Organic Matter Offers Insight into Biogeochemical Sources and Diagenetic State

    Get PDF
    Investigating the biogeochemistry of dissolved organic matter (DOM) requires the synthesis of data from several complementary analytical techniques. The traditional approach to data synthesis is to search for correlations between measurements made on the same sample using different instruments. In contrast, data fusion simultaneously decomposes data from multiple instruments into the underlying shared and unshared components. Here, Advanced Coupled Matrix and Tensor Factorization (ACMTF) was used to identify the molecular fingerprint of DOM fluorescence fractions in Arctic fjords. ACMTF explained 99.84% of the variability with six fully shared components. Individual molecular formulas were linked to multiple fluorescencecomponents and vice versa. Molecular fingerprints differed in diversity and oceanographic patterns, suggesting a link to the biogeochemical sources and diagenetic state of DOM. The fingerprints obtained through ACMTF were more specific compared to traditional correlation analysis and yielded greater compositional insight. Multivariate data fusion aligns extremely complex, heterogeneous DOM data sets and thus facilitates a more holistic understanding of DOM biogeochemistry

    Coupling bacterioplankton populations and environment to community function in coastal temperate waters

    Get PDF
    Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems. A Least Absolute Shrinkage and Selection Operator (LASSO) analysis of the biological and chemical data obtained from surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Furthermore, seasons exerted a profound effect on the substrate utilization capacity and composition of the communities. However, the pattern of substrate utilization capacity could not be directly linked to the community dynamics. The overall importance of dissolved organic matter (DOM) parameters in the LASSO models indicate that bacterioplankton respond to the present substrate landscape, with a particular importance of nitrogenous DOM. The analyses exemplifies that high taxonomic resolution can reveal links between individual populations and bulk bacterioplankton functions, and that for some taxa rRNA analyses are a necessary descriptor when attempting to correlate functions with communities. The reconciliation of patterns from two different systems indicates that the identified drivers of bacterioplankton community functions may be of broader relevance in coastal temperate waters

    Photochemistry illuminates ubiquitous organic matter fluorescence spectra

    Get PDF
    Dissolved organic matter (DOM) in aquatic environments forms a vast reservoir of carbon present as a complex supermixture of compounds. An efficient approach to tracking the production and removal of specific DOM fractions is needed across disciplines, for purposes that range from improving global carbon budgets to optimizing water treatment in engineered systems. Although widely used to study DOM, fluorescence spectroscopy has yet to deliver specific fractions with known spectral properties and predictable distributions. Here, we mathematically isolate four visible-wavelength fluorescent fractions in samples from contrasting lake, river, and ocean environments. Using parallel factor analysis (PARAFAC), we show that most measured fluorescence in environmental samples can be explained by ubiquitous spectra with nearly stable optical properties and photodegradation behaviors over environmental pH gradients. Sample extraction changed bulk fluorescence spectra but not the number or shape of underlying PARAFAC components, while photobleaching preferentially removed the two longest-wavelength components. New approaches to analyzing fluorescence data sets incorporating these findings should improve the interpretation of DOM fluorescence and increase its utility for tracing organic matter biogeochemistry in aquatic systems

    From fresh to marine waters: characterization and fate of dissolved organic matter in the Lena River delta region, Siberia

    No full text
    Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation

    The Transpolar Drift as a Source of Riverine and Shelf‐Derived Trace Elements to the Central Arctic Ocean

    No full text
    corecore