17 research outputs found

    Turnover time of fluorescent dissolved organic matter in the dark global ocean

    Get PDF
    Research articleMarine dissolved organic matter (DOM) is one of the largest reservoirs of reduced carbon on Earth. In the dark ocean (4200 m), most of this carbon is refractory DOM. This refractory DOM, largely produced during microbial mineralization of organic matter, includes humic-like substances generated in situ and detectable by fluorescence spectroscopy. Here we show two ubiquitous humic-like fluorophores with turnover times of 435±41 and 610±55 years, which persist significantly longer than the B350 years that the dark global ocean takes to renew. In parallel, decay of a tyrosine-like fluorophore with a turnover time of 379±103 years is also detected. We propose the use of DOM fluorescence to study the cycling of resistant DOM that is preserved at centennial timescales and could represent a mechanism of carbon sequestration (humic-like fraction) and the decaying DOM injected into the dark global ocean, where it decreases at centennial timescales (tyrosine-like fraction).Versión del editor10,015

    Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change

    No full text
    The radiocarbon age and biodegradability of dissolved organic matter (DOM) from a northern peat-dominated river system was studied and the effects of land-use were compared. Samples were obtained from streams and ditches comprising sub-catchments of the Kiiminki River, Northern Finland. Sample sites included areas of natural mire, areas subjected to moderate disturbance (ditching to enhance forestry), and areas subjected to serious land use change (agriculture and peat excavation). The study employed a 55 day bioassay that measured the biodegradation potential of surface-water DOM. We identified release of modern (mean 6�13 year old) DOM from natural sites, and material aged up to 1,553 years from disturbed sites. The proportion of biodegradable DOC ranged from 4.1 to 17.9 %, and bacterial DOC removal was modelled using twin-pool and reactivity-continuum (beta distribution) approaches. Bacterial growth efficiency ranged from 0.11 to 0.26 between areas of different land use, and these relatively low values reflect the humic-rich DOM released from boreal peatland. Despite the range of land-use types studied, including intensive peatland excavation areas, there was no detectable relationship between the biological lability of DOM and its radiocarbon age

    Usuing the Arctic Environment Test Basin to study the dynamics of dissolved organic matter in sea ice

    Full text link
    This is a report from the INTERICE 5 project that used the Arctic Environment Test Basin at HSVA from 21 May to 19 June 2012. The overarching aim was to investigate the physical and biological controls of dissolved organic matter incorporation into growing sea ice and the effect of melting once the ice had consolidated. Measurements were also made on the CO2 fluxes at the ice surface in relation to the chemical and biological changes taking place in the ice. The Interice 5 team was a multidisciplinary group of glaciologists, chemists and microbiologists from Belgium, Denmark, Finland, Germany and U.K. They were able to build on the experiences of previous INTERICE 2, 3 & 4 projects to maximize the opportunities from the facility. The preliminary results from the experiment will be presented, in the context of what is known about these processes from field campaigns

    Factors driving pCO2 dynamics in sea ice during a large-scale ice tank experiment

    Full text link
    According to previous studies, pCO2 fluxes measured over Arctic sea ice are higher than those measured over Antarctic sea ice. We hypothesized that this was due to enhanced respiration in Arctic sea ice, as a consequence of higher riverine inputs of dissolved organic carbon (DOC) into Arctic seawater. We tested this hypothesis during the Interice V experiment at the HSVA (Hamburg) environmental test basin facility. We reproduced the growth and decay cycle of sea ice in replicate mesocosms (1 m3) filled with North Sea water (NSW series), and compared these with another series of mesocosms to which humic-rich river water had been added (10%) to increase the DOC concentration (R series). Primary producers were excluded from the experiment. The evolution of the temperature, salinity, DOC, pCO2 and bacterial biomass and production were measured in ice sampled at regular intervals throughout the experiment, as well as in the under-ice water. In addition, ice-air pCO2 fluxes were continuously monitored over both NSW and R mesocosms. pCO2 values in ice were higher in the R ice than in the NSW ice. This is attributed to the DOC content and bacterial respiration, rather than to the ice physical properties (i.e., ice permeability constrained by the ice temperature and salinity). Indeed, R ice had higher DOC content and bacterial production than the NSW ice while both showed similar physical properties. The evolution of the ice-air pCO2 fluxes was consistent with the evolution of pCO2 in ice. The fluxes were, as expected, positive (from sea ice to the atmosphere) during ice growth and negative (from the atmosphere to the ice) during ice melt.Interice
    corecore