37 research outputs found

    Chronic administration of the angiotensin type 2 receptor agonist C21 improves insulin sensitivity in C57BL/6 mice

    Get PDF
    The renin–angiotensin system modulates insulin action. Angiotensin type 1 receptor exerts a deleterious effect, whereas the angiotensin type 2 receptor (AT2R) appears to have beneficial effects providing protection against insulin resistance and type 2 diabetes. To further explore the role of the AT2R on insulin action and glucose homeostasis, in this study we administered C57Bl/6 mice with the synthetic agonist of the AT2R C21 for 12 weeks (1 mg/kg per day; ip). Vehicle-treated animals were used as control. Metabolic parameters, glucose, and insulin tolerance, in vivo insulin signaling in main insulin-target tissues as well as adipose tissue levels of adiponectin, and TNF-α were assessed. C21-treated animals displayed decreased glycemia together with unaltered insulinemia, increased insulin sensitivity, and increased glucose tolerance compared to nontreated controls. This was accompanied by a significant decrease in adipocytes size in epididymal adipose tissue and significant increases in both adiponectin and UCP-1 expression in this tissue. C21-treated mice showed an increase in both basal Akt and ERK1/2 phosphorylation levels in the liver, and increased insulin-stimulated Akt activation in adipose tissue. This positive modulation of insulin action induced by C21 appeared not to involve the insulin receptor. In C21-treated mice, adipose tissue and skeletal muscle became unresponsive to insulin in terms of ERK1/2 phosphorylation levels. Present data show that chronic pharmacological activation of AT2R with C21 increases insulin sensitivity in mice and indicate that the AT2R has a physiological role in the conservation of insulin action.Fil: Quiroga, Diego TomĂĄs. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Departamento de QuĂ­mica BiolĂłgica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Muñoz, Marina Cecilia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Departamento de QuĂ­mica BiolĂłgica; ArgentinaFil: Gil, Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Departamento de QuĂ­mica BiolĂłgica; ArgentinaFil: Pffeifer, Marlies. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Departamento de QuĂ­mica BiolĂłgica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Toblli, Jorge Eduardo. Hospital Aleman. Laboratorio de Medicina Experimental; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Steckelings, Ulrike M.. Southern Denmark University; DinamarcaFil: Giani, Jorge Fernando. Cedars Sinai Medical Center; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Dominici, Fernando Pablo. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Departamento de QuĂ­mica BiolĂłgica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; Argentin

    Activation of angiotensin type 2 receptors prevents diabetic complications in female db/db mice by nitric oxide‐mediated mechanisms

    Get PDF
    Background and Purpose: The AT2 receptor plays a role in metabolism by opposing the actions triggered by the AT1 receptors. Activation of AT2 receptors has been shown to enhance insulin sensitivity in both normal and insulin resistance animal models. In this study, we investigated the mechanism by which AT2 receptors activation improves metabolism in diabetic mice. Experimental Approach: Female diabetic (db/db) and non-diabetic (db/+) mice were treated for 1 month with the selective AT2 agonist, compound 21 (C21, 0.3 mg·kg−1·day−1, s.c.). To evaluate whether the effects of C21 depend on NO production, a subgroup of mice was treated with C21 plus a sub-pressor dose of the NOS inhibitor l-NAME (0.1 mg·ml−1, drinking water). Key Results: C21-treated db/db mice displayed improved glucose and pyruvate tolerance compared with saline-treated db/db mice. Also, C21-treated db/db mice showed reduced liver weight and decreased hepatic lipid accumulation compared with saline-treated db/db mice. Insulin signalling analysis showed increased phosphorylation of the insulin receptor, Akt and FOXO1 in the livers of C21-treated db/db mice compared with saline-treated counterparts. These findings were associated with increased adiponectin levels in plasma and adipose tissue and reduced adipocyte size in inguinal fat. The beneficial effects of AT2 receptors activation were associated with increased eNOS phosphorylation and higher levels of NO metabolites and were abolished by l-NAME. Conclusion and Implications: Chronic C21 infusion exerts beneficial metabolic effects in female diabetic db/db mice, alleviating type 2 diabetes complications, through a mechanism that involves NO production.Fil: Dominici, Fernando Pablo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Veiras, Luciana Cecilia. Cedars Sinai Medical Center; Estados UnidosFil: Shen, Justin Z.Y.. Cedars Sinai Medical Center; Estados UnidosFil: Bernstein, Ellen A.. Cedars Sinai Medical Center; Estados UnidosFil: Quiroga, Diego TomĂĄs. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de QuĂ­mica y FĂ­sico-QuĂ­mica BiolĂłgicas; ArgentinaFil: Steckelings, Ulrike M.. University of Southern Denmark; DinamarcaFil: Bernstein, Kenneth E.. Cedars Sinai Medical Center; Estados UnidosFil: Giani, Jorge F.. Cedars Sinai Medical Center; Estados Unido

    Prevention and Intervention Studies with Telmisartan, Ramipril and Their Combination in Different Rat Stroke Models

    Get PDF
    The effects of AT1 receptor blocker, telmisartan, and the ACE inhibitor, ramipril, were tested head-to head and in combination on stroke prevention in hypertensive rats and on potential neuroprotection in acute cerebral ischemia in normotensive rats. Normotensive Wistar rats were treated s.c. 5 days prior to middle cerebral artery occlusion (MCAO) for 90 min with reperfusion. Groups (n = 10 each): (1) sham, (2) vehicle (V; 0,9% NaCl), (3) T (0,5 mg/kg once daily), (4) R (0,01 mg/kg twice daily), (5) R (0,1 mg/kg twice daily) or (6) T (0,5 mg/kg once daily) plus R (0,01 mg/kg twice daily). Twenty-four and 48 h after MCAO, neurological outcome (NO) was determined. Forty-eight h after MCAO, infarct volume by MRI, neuronal survival, inflammation factors and neurotrophin receptor (TrkB) were analysed.Stroke incidence was reduced, survival was prolonged and neurological outcome was improved in all treated SHR-SP with no differences between treated groups. In the acute intervention study, T and T+R, but not R alone, improved NO, reduced infarct volume, inflammation (TNFα), and induced TrkB receptor and neuronal survival in comparison to V.T, R or T+R had similar beneficial effects on stroke incidence and NO in hypertensive rats, confirming BP reduction as determinant factor in stroke prevention. In contrast, T and T+R provided superior neuroprotection in comparison to R alone in normotensive rats with induced cerebral ischemia

    Mas receptor activation contributes to the improvement of nitric oxide bioavailability and vascular remodeling during chronic AT1R (Angiotensin Type-1 Receptor) blockade in experimental hypertension

    No full text
    Angiotensin (1-7) production increases during AT1R (angiotensin type-1 receptor) blockade. The contribution of Ang (1-7) (angiotensin [1-7]) and its receptor (MasR) to the favorable effect of angiotensin receptor blockers on remodeling and function of resistance arteries remains unclear. We sought to determine whether MasR contributes to the improvement of vascular structure and function during chronic AT1R blockade. Spontaneously hypertensive rats were treated with Ang (1-7) or olmesartan ± MasR antagonist A-779, or vehicle, for 14 days. Blood pressure was measured by tail cuff methodology. Mesenteric arteries were dissected and mounted on a pressurized micromyograph to evaluate media-to-lumen ratio (M/L) and endothelial function. Expression of MasR and eNOS (endothelial nitric oxide synthase) was evaluated by immunoblotting, plasma nitrate by colorimetric assay, and reactive oxygen species production by dihydroethidium staining. Independently of blood pressure, olmesartan significantly reduced M/L and improved NO bioavailability, A-779 prevented these effects. Likewise, Ang (1-7) significantly reduced M/L and NO bioavailability. MasR expression was significantly increased by Ang (1-7) as well as by olmesartan, and it was blunted in the presence of A-779. Both Ang (1-7) and olmesartan increased eNOS expression and plasma nitrite which were reduced by A-779. Superoxide generation was attenuated by olmesartan and Ang (1-7) and was blunted in the presence of A-779. These MasR-mediated actions were independent of AT2R activation since olmesartan and Ang (1-7) increased MasR expression and reduced M/L in Ang II (angiotensin II)-infused AT2R knockout mice, independently of blood pressure control. A-779 prevented these effects. Hence, MasR activation may contribute to the favorable effects of AT1R antagonism on NO bioavailability and microvascular remodeling, independently of AT2R activation and blood pressure control
    corecore