8 research outputs found
Efficacy and Safety/Toxicity Study of Recombinant Vaccinia Virus JX-594 in Two Immunocompetent Animal Models of Glioma
The purpose of this study was to investigate the oncolytic potential of the recombinant, granulocyte macrophage colony-stimulating factor (GM-CSF)-expressing vaccinia virus (VV) JX-594 in experimental malignant glioma (MGs) in vitro and in immunocompetent rodent models. We have found that JX-594 killed all MG cell lines tested in vitro. Intratumoral (i.t.) administration of JX-594 significantly inhibited tumor growth and prolonged survival in rats-bearing RG2 intracranial (i.c.) tumors and mice-bearing GL261 brain tumors. Combination therapy with JX-594 and rapamycin significantly increased viral replication and further prolonged survival in both immunocompetent i.c. MG models with several animals considered “cured” (three out of seven rats >120 days, terminated experiment). JX-594 infected and killed brain tumor-initiating cells (BTICs) from patient samples grown ex vivo, and did so more efficiently than other oncolytic viruses MYXV, Reovirus type-3, and VSVΔM51. Additional safety/toxicity studies in nontumor-bearing rodents treated with a supratherapeutic dose of JX-594 demonstrated GM-CSF-dependent inflammation and necrosis. These results suggest that i.c. administered JX-594 triggers a predictable GM-CSF-mediated inflammation in murine models. Before proceeding to clinical trials, JX-594 should be evaluated in the brains of nonhuman primates and optimized for the viral doses, delivery routes as well as the combination agents (e.g., mTOR inhibitors)
Molecular therapeutics for glioblastoma brain tumor stem cells
Bibliography: p. 148-175Some pages are in colour.Includes copies of ethics and animal protocol approval. Original copies with original Partial Copyright Licence
Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth
Glioblastoma (GBM) is the most common and deadly malignant brain cancer, with a median survival of <2 years. GBM displays a cellular complexity that includes brain tumour-initiating cells (BTICs), which are considered as potential key targets for GBM therapies. Here we show that the transcription factors FOXG1 and Groucho/TLE are expressed in poorly differentiated astroglial cells in human GBM specimens and in primary cultures of GBM-derived BTICs, where they form a complex. FOXG1 knockdown in BTICs causes downregulation of neural stem/progenitor and proliferation markers, increased replicative senescence, upregulation of astroglial differentiation genes and decreased BTIC-initiated tumour growth after intracranial transplantation into host mice. These effects are phenocopied by Groucho/TLE knockdown or dominant inhibition of the FOXG1:Groucho/TLE complex. These results provide evidence that transcriptional programmes regulated by FOXG1 and Groucho/TLE are important for BTIC-initiated brain tumour growth, implicating FOXG1 and Groucho/TLE in GBM tumourigenesi
Lactate dehydrogenase A silencing in IDH mutant gliomas
BackgroundMutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1α degradation and, by doing so, may have unexpected metabolic effects.MethodsWe used human glioma tissues and derived brain tumor stem cells (BTSCs) to study the expression of HIF1α target genes in IDH mutant ((mt)) and IDH wild-type ((wt)) tumors. Focusing thereafter on the major glycolytic enzyme, lactate dehydrogenase A (LDHA), we used standard molecular methods and pyrosequencing-based DNA methylation analysis to identify mechanisms by which LDHA expression was regulated in human gliomas.ResultsWe found that HIF1α-responsive genes, including many essential for glycolysis (SLC2A1, PDK1, LDHA, SLC16A3), were underexpressed in IDH(mt) gliomas and/or derived BTSCs. We then demonstrated that LDHA was silenced in IDH(mt) derived BTSCs, including those that did not retain the mutant IDH1 allele (mIDH(wt)), matched BTSC xenografts, and parental glioma tissues. Silencing of LDHA was associated with increased methylation of the LDHA promoter, as was ectopic expression of mutant IDH1 in immortalized human astrocytes. Furthermore, in a search of The Cancer Genome Atlas, we found low expression and high methylation of LDHA in IDH(mt) glioblastomas.ConclusionTo our knowledge, this is the first demonstration of downregulation of LDHA in cancer. Although unexpected findings, silencing of LDHA and downregulation of several other glycolysis essential genes raise the intriguing possibility that IDH(mt) gliomas have limited glycolytic capacity, which may contribute to their slow growth and better prognosis
Comparative genomic and genetic analysis of glioblastoma-derived brain tumor-initiating cells and their parent tumors
Background:
Glioblastoma (GBM) is a fatal cancer that has eluded major therapeutic advances. Failure to make progress may reflect the absence of a human GBM model that could be used to test compounds for anti-GBM activity. In this respect, the development of brain tumor-initiating cell (BTIC) cultures is a step forward because BTICs appear to capture the molecular diversity of GBM better than traditional glioma cell lines. Here, we perform a comparative genomic and genetic analysis of BTICs and their parent tumors as preliminary evaluation of the BTIC model.
Methods:
We assessed single nucleotide polymorphisms (SNPs), genome-wide copy number variations (CNVs), gene expression patterns, and molecular subtypes of 11 established BTIC lines and matched parent tumors.
Results:
Although CNV differences were noted, BTICs retained the major genomic alterations characteristic of GBM. SNP patterns were similar between BTICs and tumors. Importantly, recurring SNP or CNV alterations specific to BTICs were not seen. Comparative gene expression analysis and molecular subtyping revealed differences between BTICs and GBMs. These differences formed the basis of a 63-gene expression signature that distinguished cells from tumors; differentially expressed genes primarily involved metabolic processes. We also derived a set of 73 similarly expressed genes; these genes were not associated with specific biological functions.
Conclusions:
Although not identical, established BTIC lines preserve the core molecular alterations seen in their parent tumors, as well as the genomic hallmarks of GBM, without acquiring recurring BTIC-specific changes
Lactate dehydrogenase A silencing in IDH mutant gliomas
BACKGROUND: Mutations of the isocitrate dehydrogenase 1 and 2 gene (IDH1/2) were initially thought to enhance cancer cell survival and proliferation by promoting the Warburg effect. However, recent experimental data have shown that production of 2-hydroxyglutarate by IDH mutant cells promotes hypoxia-inducible factor (HIF)1α degradation and, by doing so, may have unexpected metabolic effects. METHODS: We used human glioma tissues and derived brain tumor stem cells (BTSCs) to study the expression of HIF1α target genes in IDH mutant ((mt)) and IDH wild-type ((wt)) tumors. Focusing thereafter on the major glycolytic enzyme, lactate dehydrogenase A (LDHA), we used standard molecular methods and pyrosequencing-based DNA methylation analysis to identify mechanisms by which LDHA expression was regulated in human gliomas. RESULTS: We found that HIF1α-responsive genes, including many essential for glycolysis (SLC2A1, PDK1, LDHA, SLC16A3), were underexpressed in IDH(mt) gliomas and/or derived BTSCs. We then demonstrated that LDHA was silenced in IDH(mt) derived BTSCs, including those that did not retain the mutant IDH1 allele (mIDH(wt)), matched BTSC xenografts, and parental glioma tissues. Silencing of LDHA was associated with increased methylation of the LDHA promoter, as was ectopic expression of mutant IDH1 in immortalized human astrocytes. Furthermore, in a search of The Cancer Genome Atlas, we found low expression and high methylation of LDHA in IDH(mt) glioblastomas. CONCLUSION: To our knowledge, this is the first demonstration of downregulation of LDHA in cancer. Although unexpected findings, silencing of LDHA and downregulation of several other glycolysis essential genes raise the intriguing possibility that IDH(mt) gliomas have limited glycolytic capacity, which may contribute to their slow growth and better prognosis
Recommended from our members
METABOLIC PATHWAYS
The kynurenine pathway (KP) is the principal route of L-Tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), and the excitotoxic neurotoxin, quinolinic acid (QUIN). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2, 3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. Downstream enzymes include kynureninase (KYNU), 3-hydroxyanthranilate 3,4-dioxygenase (3-HAAO), kynurenine hydroxylase (KMO) and 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD). Kynurenine aminotransferase-I (KAT-I) is one of the enzymes responsible for synthesising KYNA. Mounting evidence directly implicates that IDO-1 induction in various tumours is a crucial mechanism facilitating tumour immune evasion and persistence. However, the involvement of the downstream machinery of the KP in brain tumour progression remains unexplored. A complete characterisation of the KP in brain tumours and the role of the KP in maintaining homeostasis between neuroprotection and neurodegeneration in glioma has not yet been investigated. Here we report the first comprehensive characterisation of the KP in cultured human glioma cells and GBM patient plasma. Our qRT-PCR data revealed that interferon-gamma (IFN-γ) (100 IU/ml) stimulation significantly potentiated the expression of IDO-1 IDO-2, KYNU, 3-HAAO, KMO and significantly down-regulated ACMSD and KAT-I expression in cultured human glioma cells. HPLC analysis revealed that IFN-γ stimulation significantly increased KP activity (KYN/TRP ratio), and significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. Our HPLC and GCMS data revealed that KP activation was significantly higher and the concentrations of TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlights a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumours