1,229 research outputs found
Numerical Modeling of Propellant Boiloff in Cryogenic Storage Tank
This Technical Memorandum (TM) describes the thermal modeling effort undertaken at Marshall Space Flight Center to support the Cryogenic Test Laboratory at Kennedy Space Center (KSC) for a study of insulation materials for cryogenic tanks in order to reduce propellant boiloff during long-term storage. The Generalized Fluid System Simulation program has been used to model boiloff in 1,000-L demonstration tanks built for testing the thermal performance of glass bubbles and perlite insulation. Numerical predictions of boiloff rate and ullage temperature have been compared with the measured data from the testing of demonstration tanks. A satisfactory comparison between measured and predicted data has been observed for both liquid nitrogen and hydrogen tests. Based on the experience gained with the modeling of the demonstration tanks, a numerical model of the liquid hydrogen storage tank at launch complex 39 at KSC was built. The predicted boiloff rate of hydrogen has been found to be in good agreement with observed field data. This TM describes three different models that have been developed during this period of study (March 2005 to June 2006), comparisons with test data, and results of parametric studies
Preparation and In Vitro Release of Drug-Loaded Microparticlesfor Oral Delivery Using Wholegrain Sorghum Kafirin Protein
Kafirin microparticles have been proposed as an oral nutraceutical and drug delivery system. This study investigates microparticles formed with kafirin extracted from white and raw versus cooked red sorghum grains as an oral delivery system. Targeted delivery to the colon would be beneficial for medication such as prednisolone, which is used in the management of inflammatory bowel disease. Therefore, prednisolone was loaded into microparticles of kafirin from the different sources using phase separation. Differences were observed in the protein content, in vitro protein digestibility, and protein electrophoretic profile of the various sources of sorghum grains, kafirin extracts, and kafirin microparticles. For all of the formulations, the majority of the loaded prednisolone was not released in in vitro conditions simulating the upper gastrointestinal tract, indicating that most of the encapsulated drug could reach the target area of the lower gastrointestinal tract. This suggests that these kafirin microparticles may have potential as a colon-targeted nutraceutical and drug delivery system
Numerical Modeling of Propellant Boil-Off in a Cryogenic Storage Tank
A numerical model to predict boil-off of stored propellant in large spherical cryogenic tanks has been developed. Accurate prediction of tank boil-off rates for different thermal insulation systems was the goal of this collaboration effort. The Generalized Fluid System Simulation Program, integrating flow analysis and conjugate heat transfer for solving complex fluid system problems, was used to create the model. Calculation of tank boil-off rate requires simultaneous simulation of heat transfer processes among liquid propellant, vapor ullage space, and tank structure. The reference tank for the boil-off model was the 850,000 gallon liquid hydrogen tank at Launch Complex 39B (LC- 39B) at Kennedy Space Center, which is under study for future infrastructure improvements to support the Constellation program. The methodology employed in the numerical model was validated using a sub-scale model and tank. Experimental test data from a 1/15th scale version of the LC-39B tank using both liquid hydrogen and liquid nitrogen were used to anchor the analytical predictions of the sub-scale model. Favorable correlations between sub-scale model and experimental test data have provided confidence in full-scale tank boil-off predictions. These methods are now being used in the preliminary design for other cases including future launch vehicle
Barrier Distributions as a Tool to Investigate Fusion and Fission
The recent availability of precisely measured fusion cross-sections has
enabled the extraction of a representation of the distribution of barriers
encountered during fusion. These representations, obtained from a variety of
reactions, provide a direct observation of how the structure of the fusing
nuclei changes the inter-nuclear potential landscape, thus affecting the fusion
probability. Recent experiments showing the effects of static quadrupole and
hexadecapole deformation, single-- and double-phonon states, transfer of
nucleons between two nuclei, and high lying excited states are reviewed. The
application of these concepts to the explanation of the anomalous
fission-fragment anisotropies observed following reactions with actinides is
discussed.Comment: 12 pages, To be published in the Proceedings of the NN 97 Conference,
Gatlinburg, Tennessee, June 1997 (Nucl. Phys. A
A detailed investigation of the onion structure of exchanged coupled magnetic Fe3-dO4@CoFe2O4@Fe3-dO4 nanoparticles
Nanoparticles that combine several magnetic phases offer wide perspectives for cutting edge applications because of the high modularity of their magnetic properties. Besides the addition of the magnetic characteristics intrinsic to each phase, the interface that results from core-shell and, further, from onion structures leads to synergistic properties such as magnetic exchange coupling. Such a phenomenon is of high interest to overcome the superparamagnetic limit of iron oxide nanoparticles which hampers potential applications such as data storage or sensors. In this manuscript, we report on the design of nanoparticles with an onion-like structure which has been scarcely reported yet. These nanoparticles consist of a Fe3-dO4 core covered by a first shell of CoFe2O4 and a second shell of Fe3-dO4, e.g., a Fe3-dO4@CoFe2O4@Fe3-dO4 onion-like structure. They were synthesized through a multistep seed-mediated growth approach which consists consists in performing three successive thermal decomposition of metal complexes in a high-boiling-point solvent (about 300 °C). Although TEM micrographs clearly show the growth of each shell from the iron oxide core, core sizes and shell thicknesses markedly differ from what is suggested by the size increasing. We investigated very precisely the structure of nanoparticles in performing high resolution (scanning) TEM imaging and geometrical phase analysis (GPA). The chemical composition and spatial distribution of atoms were studied by electron energy loss spectroscopy (EELS) mapping and spectroscopy. The chemical environment and oxidation state of cations were investigated by 57Fe Mössbauer spectrometry, soft X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The combination of these techniques allowed us to estimate the increase of Fe2+ content in the iron oxide core of the core@shell structure and the increase of the cobalt ferrite shell thickness in the core@shell@shell one, whereas the iron oxide shell appears to be much thinner than expected. Thus, the modification of the chemical composition as well as the size of the Fe3-dO4 core and the thickness of the cobalt ferrite shell have a high impact on the magnetic properties. Furthermore, the growth of the iron oxide shell also markedly modifies the magnetic properties of the core-shell nanoparticles, thus demonstrating the high potential of onion-like nanoparticles to accurately tune the magnetic properties of nanoparticles according to the desired applications. © 2021 American Chemical Society
Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers
In antiferromagnetically coupled superlattices grown on (001) faces of cubic
substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or
Fe/Cr, the magnetic states evolve under competing influence of bilinear and
biquadratic exchange interactions, surface-enhanced four-fold in-plane
anisotropy, and specific finite-size effects. Using phenomenological
(micromagnetic) theory, a comprehensive survey of the magnetic states and
reorientation transitions has been carried out for multilayer systems with even
number of ferromagnetic sub-layers and magnetizations in the plane. In
two-layer systems (N=2) the phase diagrams in dependence on components of the
applied field in the plane include ``swallow-tail'' type regions of
(metastable) multistate co-existence and a number of continuous and
discontinuous reorientation transitions induced by radial and transversal
components of the applied field. In multilayers (N \ge 4) noncollinear states
are spatially inhomogeneous with magnetization varying across the multilayer
stack. For weak four-fold anisotropy the magnetic states under influence of an
applied field evolve by a complex continuous reorientation into the saturated
state. At higher anisotropy they transform into various inhomogeneous and
asymmetric structures. The discontinuous transitions between the magnetic
states in these two-layers and multilayers are characterized by broad ranges of
multi-phase coexistence of the (metastable) states and give rise to specific
transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio
Registration of Common Bacterial Blight, Rust and Bean Common Mosaic Resistant Great Northern Common Bean Germplasm Line ABC-Weihing
Great northern common bean (Phaseolus vulgaris L.) germplasm line ABC-Weihing (Reg. No. GP-246, PI 647964) was developed by the University of Nebraska Agricultural Research Division in cooperation with USDA-ARS and released in 2006. This line, tested as NE1-05-4, was bred specifically for enhanced resistance to common bacterial blight (CBB), a major seed borne disease of common bean caused by the bacterium Xanthomonas campestris pv. phaseoli (Smith) Dye (Xcp). ABC-Weihing is a great northern BC5F3:6 line obtained from five backcrosses (‘Weihing’*5//‘Chase’/XAN 159). The first cross was made in spring 1997. Only BCnF1 plants resistant to Xcp isolates Dominican Republic DR-7 and Nebraska SC4A, as determined by multiple needle leaf inoculation tests in the greenhouse, were used for successive backcrossing. In addition to phenotypic selection for CBB resistance, marker-assisted selection for the resistant QTLlinked marker SU91 was conducted in the BC1F1, BC2F1, and ABC-Weihing. When inoculated with Nebraska Xcp strains in the field, ABC-Weihing exhibited resistance in both 2005 and 2006. ABC-Weihing has Ur-3 and Ur-6 genes for resistance to common bean rust and carries the single dominant hypersensitive I gene that provides resistance to all non-necrotic strains of the Bean common mosaic virus (BCMV). ABC-Weihing has bright white seed, blooms 45 d after planting, and is a midseason bean maturing 92 d after planting
- …