8 research outputs found

    Laser speckle contrast imaging and machine learning in application to physiological fluids flow rate recognition

    Get PDF
    The laser speckle contrast imaging allows the determination of the flow motion in a sequence of images. The aim of this study is to combine the speckle contrast imaging and machine learning methods to recognition of physiological fluids flow rate. Data on the flow of intralipid with average flow rate of 0-2 mm/s in a glass capillary were obtained using a developed experimental setup. These data were used to train a feed-forward artificial neural network. The accuracy of random image recognition was quite low due to pulsations and the uneven flow set by the pump. To increase the recognition accuracy, various methods for calculating speckle contrast were used. The best result was obtained when calculating the mean spatial speckle contrast. The application of the mean spatial speckle contrast imaging together with the proposed artificial neural network allowed to increase the fluid flow rate recognition accuracy from about 65 % to 89 % and make it possible to exclude an expert from the data processing

    Tissue mimicking phantoms for fluorescence imaging

    Get PDF
    The article describes the development of the optical phantom mimicking flavin adenine dinucleotide (FAD) and skin collagen fluorescence. The results of experimental studies using fluorescence imaging and fluorescence spectroscopy methods are demonstrated. The method of optical phantom production for quick calibration of fluorescence imaging devices for further application in clinical practice is proposed

    Impairments of cerebral blood flow microcirculation in rats brought on by cardiac cessation and respiratory arrest

    Get PDF
    The impairments of cerebral blood flow microcirculation brought on by cardiac and respiratory arrest were assessed with multi-modal diagnostic facilities, utilising laser speckle contrast imaging, fluorescence spectroscopy and diffuse reflectance spectroscopy. The results of laser speckle contrast imaging show a notable reduction of cerebral blood flow in small and medium size vessels during a few minutes of respiratory arrest, while the same effect was observed in large sinuses and their branches during the circulatory cessation. Concurrently, the redox ratio assessed with fluorescence spectroscopy indicates progressing hypoxia, NADH accumulation and increase of FAD consumption. The results of diffuse reflectance spectra measurements display a more rapid grow of the perfusion of deoxygenated blood in case of circulatory impairment. In addition, consequent histopathological analysis performed by using new tissue staining procedure developed in-house. It shows notably higher reduction of size of the neurons due to their wrinkling within brain tissues influenced by circulation impair. Whereas, the brain tissues altered with the respiratory arrest demonstrate focal perivascular oedema and mild hypoxic changes of neuronal morphology. Thus, the study suggests that consequences of a cessation of cerebral blood flow become more dramatic and dangerous compare to respiratory arrest

    Real-time laser speckle contrast imaging for intraoperative neurovascular blood flow assessment: animal experimental study

    Get PDF
    The use of various blood flow control methods in neurovascular interventions is crucial for reducing postoperative complications. Neurosurgeons worldwide use different methods, such as contact Dopplerography, intraoperative indocyanine videoangiography (ICG) video angiography, fluorescein angiography, flowmetry, intraoperative angiography, and direct angiography. However, there is no noninvasive method that can assess the presence of blood flow in the vessels of the brain without the introduction of fluorescent substances throughout the intervention. The real-time laser-speckle contrast imaging (LSCI) method was studied for its effectiveness in controlling blood flow in standard cerebrovascular surgery cases in rat common carotid arteries, such as proximal occlusion, trapping, reperfusion, anastomosis, and intraoperative vessel thrombosis. The real-time LSCI method is a promising method for use in neurosurgical practice. This approach allows timely diagnosis of intraoperative disturbance of blood flow in vessels in cases of clip occlusion or thrombosis. Additionally, LSCI allows us to reliably confirm the functioning of the anastomosis and reperfusion after removal of the clips and thrombolysis in real time. An unresolved limitation of the method is noise from movements, but this does not reduce the value of the method. Additional research is required to improve the quality of the data obtained

    Investigation of blood microcirculation parameters in patients with rheumatic diseases by videocapillaroscopy and laser Doppler flowmetry during cold pressor test

    Get PDF
    Videocapillaroscopy (VCS) and laser Doppler flowmetry (LDF) are non-invasive methods for evaluating microcirculation parameters. The VCS method is based on a high-speed video recording of capillaries in the nailfold. The recorded video frames are processed using a specialized algorithm to determine the red blood cells velocity. The LDF technique is based on the analysis of the Doppler shift of back-scattered laser radiation from moving red blood cells. In this work, simultaneous measurements of VCS and LDF have been performed in healthy volunteers and rheumatic patient. The study was conducted using a cold pressor test. Changes were recorded in response to cold exposure in rheumatic diseases

    Brain metabolism changes in cases of impaired breathing or blood circulation in rodents evaluated by real time optical spectroscopy methods

    Get PDF
    The aim of the study was to compare the metabolic activity of brain cortex after the acute hypoxia caused by the impairment of breathing or blood circulation. Male Wistar rats were randomized in two groups: impaired breathing and blood circulation failure groups. Fluorescence under 365 and 450 nm excitation and diffuse reflectance intensity at 550-820 nm range were estimated. We found that after long-term hypoxic conditions, notable metabolic changes occur. We suppose that oxygen deficiency causes an activation of the GABA shunt mechanism. In cases of blood circulation failure, fluorescence intensity changes faster than in cases of breathing impairment

    Adrenaline induces calcium signal in astrocytes and vasoconstriction via activation of monoamine oxidase

    No full text
    Abstract Adrenaline or epinephrine is a hormone playing an important role in physiology. It is produced de-novo in the brain in very small amounts compared to other catecholamines, including noradrenaline. Although the effects of adrenaline on neurons have been extensively studied, much less is known about the action of this hormone on astrocytes. Here, we studied the effects of adrenaline on astrocytes in primary co-culture of neurons and astrocytes. Application of adrenaline induced calcium signal in both neurons and astrocytes, but only in neurons this effect was dependent on α- and β-receptor antagonists. The effects of adrenaline on astrocytes were less dependent on adrenoreceptors: the antagonist carvedilol had only moderate effect on the calcium signal and the agonist of adrenoreceptors methoxamine induced a signal only in small proportion of the cells. We found that adrenaline in astrocytes activates phospholipase C and subsequent release of calcium from the endoplasmic reticulum. Calcium signal in astrocytes is initiated by the metabolism of adrenaline by the monoamine oxidase (MAO), which activates reactive oxygen species production and induces lipid peroxidation. Inhibitor of MAO selegiline inhibited both adrenaline-induced calcium signal in astrocytes and the vasoconstriction that indicates an important role for monoamine oxidase in adrenaline-induced signalling and function

    Investigation of blood microcirculation parameters in patients with rheumatic diseases by videocapillaroscopy and laser Doppler flowmetry during cold pressor test

    No full text
    Abstract Videocapillaroscopy (VCS) and laser Doppler flowmetry (LDF) are non-invasive methods for evaluating microcirculation parameters. The VCS method is based on a high-speed video recording of capillaries in the nailfold. The recorded video frames are processed using a specialized algorithm to determine the red blood cells velocity. The LDF technique is based on the analysis of the Doppler shift of back-scattered laser radiation from moving red blood cells. In this work, simultaneous measurements of VCS and LDF have been performed in healthy volunteers and rheumatic patient. The study was conducted using a cold pressor test. Changes were recorded in response to cold exposure in rheumatic diseases
    corecore