6 research outputs found

    The narrowing down of inoculated communities of coagulase-negative staphylococci in fermented meat models is modulated by temperature and pH

    No full text
    Coagulase-negative staphylococci (CNS) are involved in colour and flavour formation of fermented meats. Their communities are established either spontaneously, as in some artisan-type products, or using a starter culture. The latter usually consists of Staphylococcus carnosus and/or Staphylococcus xylosus strains, although strains from other CNS species also have potential for application. However, it is not entirely clear how the fitness of alternative starter cultures within a fermented meat matrix compares to conventional ones and how this may be affected by processing conditions. Therefore, the aim of this study was to assess the influence of two key processing conditions, namely temperature and acidity, on the competitiveness of a cocktail of five different strains of CNS belonging to species that are potentially important for meat fermentation (Staphylococcus xylosus 2S7-2, S. carnosus 833, Staphylococcus epidermidis ATCC 12228, Staphylococcus equorum DFL-S19, and Staphylococcus saprophyticus FPS1). To this end, fermented meat models consisting of cured meat batters with initial pH values of 5.3, 5.5, or 5.7 were inoculated with these strains, stuffed in containers, and incubated at 23, 30, or 37 degrees C. Both the pH level and the temperature influenced the composition of the CNS communities, giving a competitive advantage to the best adapted species. Staphylococcus xylosus preferred low temperature and mild acidity, whereas an elevated temperature selected for S. epidermidis and a low pH for S. carnosus. Under the conditions tested, S. saprophyticus and S. equorum were outcompeted by the three other CNS species. Hence, CNS communities in fermented meats are not only established based on the initial presence of specific species in the meat batter but also by their subsequent adaptation to the processing conditions during fermentation, potentially overruling the use of starter cultures

    Pervasiveness of Staphylococcus carnosus over Staphylococcus xylosus is affected by the level of acidification within a conventional meat starter culture set-up

    No full text
    Staphylococcus carnosus and Staphylococcus xylosus are commonly used, individually or in combination, within conventional starter cultures for the purposes of colour and flavour development during meat fermentation. Yet, little is known about the relative importance of both species under different processing conditions. The present study aimed at investigating the competitiveness of S. carnosus within a meat starter culture under different acidification profiles. The experimental set-up involved a gradient of decreasing experimental control but increasing realism, ranging from liquid meat fermentation models in a meat simulation medium, over solid mince based meat fermentation models, to fermented sausage production on pilot-scale level. In general, S. carrion's gained a fitness advantage over S. xylosus in the most acidified variants of each set-up. In contrast, increasing persistence of S. xylosus was seen at the mildest acidification profiles, especially when approximating actual meat fermentation practices. Under such conditions, S. carnosus was reduced to co-prevalence in the mince based meat fermentation models and was fully outcompeted on pilot-scale level. The latter was even the case when no S. xylosus starter culture was added, whereby S. carnosus was overpowered by staphylococci that originated from the meat background (mostly S. xylosus strains). The results of the present study suggested that conventional starter cultures behave differently when applied in different technological set-ups or using different recipes, with possible repercussions on fermented meat product quality

    Species pervasiveness within the group of coagulase-negative staphylococci associated with meat fermentation is modulated by pH

    Get PDF
    During spontaneous meat fermentations, Staphylococcus equorum, Staphylococcus saprophyticus, and Staphylococcus xylosus are generally the most prevailing species within the communities of coagulase-negative staphylococci (CNS). There is an interest to introduce CNS isolates from artisan-style spontaneous meat fermentations as starter cultures in more industrialized processes, as to confer additional quality benefits. However, staphylococcal competitiveness within the meat matrix is affected by the processing conditions, which vary considerably among product types. A major factor of variability relates to the intensity of acidification, driven by the concentration of added carbohydrates. The effect of pH on CNS prevalence was studied in both a mince-based meat fermentation model and in fermented sausages produced on pilot scale. Roughly, from all experiments combined, it appeared that a pH of 5.3 corresponded with a breakpoint for CNS selection. Above this value, a general prevalence by S. xylosus was found, even overruling the addition of starter cultures consisting of S. equorum and S. saprophyticus strains. At pH values below 5.3, S. xylosus was also accompanied by S. equorum (following a mild pH drop) and S. saprophyticus (following a stronger pH drop). Still, addition of starter cultures affected the volatile profile compared to the control batch, even if those starter cultures were not able to dominate during the ripening process. This study nonetheless provides a warning for an overly confident use of specific CNS species as starter cultures, especially when in a given processing context the prevailing conditions do not allow superior growth compared to the CNS from the background microbiota

    Effect of temperature and pH on the community dynamics of coagulase-negative staphylococci during spontaneous meat fermentation in a model system

    No full text
    Coagulase-negative staphylococci (CNS) contribute to the product quality of fermented meats. In spontaneously fermented meats, CNS communities are variable and difficult to predict, as their compositions depend on a superposed combination of different processing factors. To partially disentangle this superposition, a meat model system was used to study the influence of temperature and pH on the CNS community dynamics. Therefore, cured pork mince was prepared that was divided into three batches of different initial acidity levels, namely pH 5.7, pH 5.5, and pH 5.3. These three batches were incubated at three different temperatures, namely 23 degrees C, 30 degrees C, and 37 degrees C. Hence, the experimental set- up resulted in nine combinations of different temperature and initial pH values. Samples were analysed after 3 and 14 days to monitor pH, colony counts, and species diversity of the CNS communities, based on mannitol-salt-phenol-red agar (MSA) medium. At conditions of mild acidity (pH 5.7) and low temperature (23 degrees C), as often encountered during artisan-type meat fermentations, a co-prevalence of Staphylococcus xylosus, Staphylococcus equorum, and Staphylococcus saprophyticus occurred. At the same initial pH but higher incubation temperatures (30 degrees C and 37 degrees C), Staphylococcus lugdunensis became the prevailing CNS species, besides S. saprophyticus (30 degrees C) and the coagulase-positive species Staphylococcus aureus (37 degrees C). When the initial pH was set at 5.5, S. saprophyticus was the prevailing CNS species at both 23 degrees C and 30 degrees C, but it was replaced by Staphylococcus epidermidis and Staphylococcus simulans at 37 degrees C after 3 and 14 days, respectively. At the most acidic conditions ( pH 5.3), CNS counts declined and many of the MSA isolates were of non-staphylococcal nature. Among others, Staphylococcus carnosus (23 degrees C), Staphylococcus warneri (30 degrees C), and S. epidermidis (37 degrees C) were found. Overall, the results of the present study indicated that the processing factors temperature and pH had a clear impact on the shaping of staphylococcal communities during meat fermentation

    Processing environment monitoring in low moisture food production facilities : Are we looking for the right microorganisms?

    Get PDF
    Processing environment monitoring is gaining increasing importance in the context of food safety management plans/HACCP programs, since past outbreaks have shown the relevance of the environment as contamination pathway, therefore requiring to ensure the safety of products. However, there are still many open questions and a lack of clarity on how to set up a meaningful program, which would provide early warnings of potential product contamination. Therefore, the current paper aims to summarize and evaluate existing scientific information on outbreaks, relevant pathogens in low moisture foods, and knowledge on indicators, including their contribution to a “clean” environment capable of limiting the spread of pathogens in dry production environments. This paper also outlines the essential elements of a processing environment monitoring program thereby supporting the design and implementation of better programs focusing on the relevant microorganisms. This guidance document is intended to help industry and regulators focus and set up targeted processing environment monitoring programs depending on their purpose, and therefore provide the essential elements needed to improve food safet
    corecore