60 research outputs found

    Long-term vegetation dynamics of a tropical megadelta: Mid-Holocene palaeoecology of the Orinoco Delta (NE Venezuela)

    Get PDF
    © 2019 Elsevier Ltd Coastal wetlands have been proposed as highly threatened by the ongoing and future climatic change, including projected sea-level changes as an additional forcing factor compared to more inland locations. The limited knowledge generated to date in this topic has been primarily focused on those areas attaining a high population density, and rarely deals with long-term (>50 years) dynamics. Here we present the first Holocene palaeoecological study carried in the Orinoco Delta, in NE Venezuela. The record presented here contains sediments from the last 6200 years and is located in a river-shore swamp dominated by the palm Mauritia flexuosa. Current human occupation is almost restricted to small settlements of the Warao indigenous culture, closely related to the use of M. flexuosa and other palm species present in the zone. The results show the occurrence of three well-distinguished palynological zones: (i) from 6200 to 5200 cal yr BP, characterised by mixed rainforest and other taxa related to salinity (coastal-like), low (negative) values of magnetic susceptibility and magnetic grain size, absence of transported clays, and the highest macrocharcoal particles abundance; (ii) from 5200 to 2950 cal yr BP, marked by a replacement of the mangrove-like vegetation by a more inland mixed-swamp forest community with low levels of charcoal, and (iii) from 2950 cal yr BP to present-day, characterised by the establishment of the current vegetation community, dominated by M. flexuosa, and an increasing trend in the charcoal curve since the last 700 years. A combination of regional (climatic changes) and local (sediment ontogeny) has been proposed as the key drivers influencing the vegetation succession recorded. The stabilisation of the sea-level that occurred during the mid-Holocene would have favoured the transgression of the coastal line, with the migration of the coastal-like vegetation seawards. Synchronous to this event, a trend towards drier conditions has been reported in the close Cariaco record, that could have also influenced the vegetation replacement. Between 3800 and 2800 years ago, the increased ENSO variability registered in Cariaco may have played a key role in the expansion of the Mauritia palm community. It is suggested that in our location, the potential inhabiting human populations were differently influenced by these environmental changes. First, the disappearance of the coastal resources could have favoured land abandonment, whereas the increase in the abundance of the palm might be influential for the arrival of other inland cultures that were previously used to manage Mauritia. This sequence shows the importance of the ecosystem services for the location inhabitants, highlighting the abandonment of the mid-Holocene culture coeval with the disappearance of its ecosystem. These results also provide information about the sensitivity and resilience in facing external stressors of both humans and vegetation, and will be valuable tools for managing the future of this ecosystem

    Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    Full text link
    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40°C, and then combusted at 950°C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46768/1/254_2004_Article_BF00770471.pd

    Anatomía comparativa de la lámina foliar y sistemática en la subtribu neotropical Mauritiinae (Arecaceae, Calamoideae)

    No full text
    This represents the first comparative study of the leaf anatomy within the subtribe Mauritiinae (Arecaceae) and includes all three genera and most of the recognized species. The leaf blade anatomy clearly defines these neotropical palms and allows the identification of two groups: Lepidocaryum can be separated by its homogeneous mesophyll, while the group formed by Mauritia y Mauritiella has the shared presence of a diferentiated mesophyll into palisade and spongy parenchyma. Our study supports the topologies of the most recent molecular phylogenies that include these three genera; however we did not identify characters that are sufficiently variable for species identification
    corecore