144 research outputs found

    Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors (An electronic Raman scattering study)

    Full text link
    For YBa_2Cu_3O_{6+\delta} and Bi_2Sr_2CaCu_2O_8 superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T_c the system exhibits a sharp Raman resonance of B_1g symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T_c produces a global SC state.Comment: 5 pages, 4 EPS figures; SNS'97 Proceedings to appear in J. Phys. Chem. Solid

    Vanishing Loss Effect on the Effective ac Conductivity behavior for 2D Composite Metal-Dielectric Films At The Percolation Threshold

    Full text link
    We study the imaginary part of the effective acac conductivity as well as its distribution probability for vanishing losses in 2D composites. This investigation showed that the effective medium theory provides only informations about the average conductivity, while its fluctuations which correspond to the field energy in this limit are neglected by this theory.Comment: 6 pages, 2 figures, submitted to Phys.Rev.

    C-axis electronic Raman scattering in Bi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We report a c-axis-polarized electronic Raman scattering study of Bi_2Sr_2CaCu_2O_{8+\delta} single crystals. In the normal state, a resonant electronic continuum extends to 1.5 eV and gains significant intensity as the incoming photon energy increases. In the superconducting state, a coherence 2\Delta peak appears around 50 meV, with a suppression of the scattering intensity at frequencies below the peak position. The peak energy, which is higher than that seen with in-plane polarizations, signifies distinctly different dynamics of quasiparticle excitations created with out-of-plane polarization.Comment: 12 pages, REVTEX, 3 postscript figure

    No Far-Infrared-Spectroscopic Gap in Clean and Dirty High-TC_C Superconductors

    Full text link
    We report far infrared transmission measurements on single crystal samples derived from Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8}. The impurity scattering rate of the samples was varied by electron-beam irradiation, 50MeV 16^{16}O+6^{+6} ion irradiation, heat treatment in vacuum, and Y doping. Although substantial changes in the infrared spectra were produced, in no case was a feature observed that could be associated with the superconducting energy gap. These results all but rule out ``clean limit'' explanations for the absence of the spectroscopic gap in this material, and provide evidence that the superconductivity in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} is gapless.Comment: 4 pages and 3 postscript figures attached. REVTEX v3.0. Accepted for publication in Phys. Rev. Lett. IRDIRT

    Developing an Optical Microlever for Stable and Unsupported Force Amplification

    Get PDF
    — Optical micromachines have the potential to im prove the capabilities of optical tweezers by amplifying forces and allowing for indirect handling and probing of specimens. However, systematic design and testing of micromachine per formance is still an emerging field. In this work we have designed and tested an unsupported microlever, suitable for general-purpose optical tweezer studies, that demonstrates stable trapping performance and repeatable doubling of applied forces. Stable trapping was ensured by analysing images to monitor focus shift when levers oscillated repeatedly, before the best-performing design was selected for force amplification. This study also shows that direct measurement of trap stiffness using the equipartition theorem appears to be a valid method for measuring applied forces on the spherical handles of microlevers

    C-axis Raman spectra of a normal plane-chain bilayer cuprate and the pseudogap

    Full text link
    We investigate the Raman spectra in the geometry where both incident and scattered photon polarizations are parallel to the z^\hat{z}-direction, for a plane-chain bilayer coupled via a single-particle tunneling tt_\perp. The Raman vertex is derived in the tight-binding limit and in the absence of Coulomb screening, the Raman intensity can be separated into intraband (t4\propto t_\perp^4) and interband (t2\propto t_\perp^2) transitions. In the small-tt_\perp limit, the interband part dominates and a pseudogap will appear as it does in the conductivity. Coulomb interactions bring in a two-particle coupling and result in the breakdown of intra- and interband separation. Nevertheless, when tt_\perp is small, the Coulomb screening (t4\propto t_\perp^4) has little effect on the intensity to which the unscreened interband transitions contribute most. In general, the total Raman spectra are strongly dependent on the magnitude of tt_\perp.Comment: 23 pages, 6 figures, submitted to Phys. Rev.

    Relation between the superconducting gap energy and the two-magnon Raman peak energy in Bi2Sr2Ca{1-x}YxCu2O{8+\delta}

    Full text link
    The relation between the electronic excitation and the magnetic excitation for the superconductivity in Bi2Sr2Ca{1-x}YxCu2O{8+\delta} was investigated by wide-energy Raman spectroscopy. In the underdoping region the B1g scattering intensity is depleted below the two-magnon peak energy due to the "hot spots" effects. The depleted region decreases according to the decrease of the two-magnon peak energy, as the carrier concentration ncreases. This two-magnon peak energy also determines the B1g superconducting gap energy as 2ΔαωTwoMagnonJeffective2\Delta \approx \alpha \hbar \omega_{\rm Two-Magnon} \approx J_{\rm effective} (α=0.340.41)(\alpha=0.34-0.41) from under to overdoping hole concentration.Comment: 10 pages, 4 figure

    Electronic Raman scattering in YBCO and other superconducting cuprates

    Full text link
    Superconductivity induced structures in the electronic Raman spectra of high-Tc superconductors are computed using the results of ab initio LDA-LMTO three-dimensional band structure calculations via numerical integrations of the mass fluctuations, either in the whole 3D Brillouin zone or limiting the integrations to the Fermi surface. The results of both calculations are rather similar, the Brillouin zone integration yielding additional weak structures related to the extended van Hove singularities. Similar calculations have been performed for the normal state of these high-Tc cuprates. Polarization configurations have been investigated and the results have been compared to experimental spectra. The assumption of a simple d_(x^2-y^2)-like gap function allows us to explain a number of experimental features but is hard to reconcile with the relative positions of the A1g and B1g peaks.Comment: 14 pages, LaTeX (RevTeX), 5 PostScript figures, uses multicol.sty, submitted to PR

    Raman study of carrier-overdoping effects on the gap in high-Tc superconducting cuprates

    Full text link
    Raman scattering in the heavily overdoped (Y,Ca)Ba_2Cu_3O_{7-d} (T_c = 65 K) and Bi_2Sr_2CaCu_2O_{8+d} (T_c = 55 K) crystals has been investigated. For the both crystals, the electronic pair-breaking peaks in the A_{1g} and B_{1g} polarizations were largely shifted to the low energies close to a half of 2Delta_0, Delta_0 being the maximum gap. It strongly suggests s-wave mixing into the d-wave superconducting order parameter and the consequent manifestation of the Coulomb screening effect in the B_{1g}-channel. Gradual mixing of s-wave component with overdoping is not due to the change of crystal structure symmetry but a generic feature in all high-T_c superconducting cuprates.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B, Rapid communicaito

    Multiple Andreev Reflection and Giant Excess Noise in Diffusive Superconductor/Normal-Metal/Superconductor Junctions

    Get PDF
    We have studied superconductor/normal metal/superconductor (SNS) junctions consisting of short Au or Cu wires between Nb or Al banks. The Nb based junctions display inherent electron heating effects induced by the high thermal resistance of the NS boundaries. The Al based junctions show in addition subharmonic gap structures in the differential conductance dI/dV and a pronounced peak in the excess noise at very low voltages V. We suggest that the noise peak is caused by fluctuations of the supercurrent at the onset of Josephson coupling between the superconducting banks. At intermediate temperatures where the supercurrent is suppressed a noise contribution ~1/V remains, which may be interpreted as shot noise originating from large multiple charges.Comment: 7 pages, 7 figures, extended versio
    corecore