Abstract

The relation between the electronic excitation and the magnetic excitation for the superconductivity in Bi2Sr2Ca{1-x}YxCu2O{8+\delta} was investigated by wide-energy Raman spectroscopy. In the underdoping region the B1g scattering intensity is depleted below the two-magnon peak energy due to the "hot spots" effects. The depleted region decreases according to the decrease of the two-magnon peak energy, as the carrier concentration ncreases. This two-magnon peak energy also determines the B1g superconducting gap energy as 2ΔαωTwoMagnonJeffective2\Delta \approx \alpha \hbar \omega_{\rm Two-Magnon} \approx J_{\rm effective} (α=0.340.41)(\alpha=0.34-0.41) from under to overdoping hole concentration.Comment: 10 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions