157 research outputs found

    Mechanical characterization of individual polycrystalline carbon tubes for use in electrical nano-interconnects

    Get PDF
    Polycrystalline carbon tubes were generated by CVD inside electrochemically prepared nano-porous anodic aluminium oxide membranes. This method produced nano-tubes without catalyst, featuring polycrystalline and a few layer thick walls. Individual tubes could be isolated and suspended on microfabricated substrates such that they formed single-side clamped beams. These beams were then used to investigate their mechanical properties employing electrostatic forces for bending the tubes beyond their mechanical stability where pull-in occurs, which could be detected by monitoring the current flowing from the tube to the substrate

    Charge transfer fluctuation, dd-wave superconductivity, and the B1gB_{1g} Raman phonon in the Cuprates: A detailed analysis

    Full text link
    The Raman spectrum of the B1gB_{1g} phonon in the superconducting cuprate materials is investigated theoretically in detail in both the normal and superconducting phases, and is contrasted with that of the A1gA_{1g} phonon. A mechanism involving the charge transfer fluctuation between the two oxygen ions in the CuO2_2 plane coupled to the crystal field perpendicular to the plane is discussed and the resulting electron-phonon coupling is evaluated. Depending on the symmetry of the phonon the weight of different parts of the Fermi surface in the coupling is different. This provides the opportunity to obtain information on the superconducting gap function at certain parts of the Fermi surface. The lineshape of the phonon is then analyzed in detail both in the normal and superconducting states. The Fano lineshape is calculated in the normal state and the change of the linewidth with temperature below Tc_{c} is investigated for a dx2y2d_{x^{2}-y^{2}} pairing symmetry. Excellent agreement is obtained for the B1gB_{1g} phonon lineshape in YBa2_{2}Cu3_{3}O7_{7}. These experiments, however, can not distinguish between dx2y2d_{x^{2}-y^{2}} and a highly anisotropic ss-wave pairing.Comment: Revtex, 21 pages + 4 postscript figures appended, tp

    Evolution of Magnetic and Superconducting Fluctuations with Doping of High-Tc Superconductors (An electronic Raman scattering study)

    Full text link
    For YBa_2Cu_3O_{6+\delta} and Bi_2Sr_2CaCu_2O_8 superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T_c the system exhibits a sharp Raman resonance of B_1g symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T_c produces a global SC state.Comment: 5 pages, 4 EPS figures; SNS'97 Proceedings to appear in J. Phys. Chem. Solid

    Vanishing Loss Effect on the Effective ac Conductivity behavior for 2D Composite Metal-Dielectric Films At The Percolation Threshold

    Full text link
    We study the imaginary part of the effective acac conductivity as well as its distribution probability for vanishing losses in 2D composites. This investigation showed that the effective medium theory provides only informations about the average conductivity, while its fluctuations which correspond to the field energy in this limit are neglected by this theory.Comment: 6 pages, 2 figures, submitted to Phys.Rev.

    No Far-Infrared-Spectroscopic Gap in Clean and Dirty High-TC_C Superconductors

    Full text link
    We report far infrared transmission measurements on single crystal samples derived from Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8}. The impurity scattering rate of the samples was varied by electron-beam irradiation, 50MeV 16^{16}O+6^{+6} ion irradiation, heat treatment in vacuum, and Y doping. Although substantial changes in the infrared spectra were produced, in no case was a feature observed that could be associated with the superconducting energy gap. These results all but rule out ``clean limit'' explanations for the absence of the spectroscopic gap in this material, and provide evidence that the superconductivity in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} is gapless.Comment: 4 pages and 3 postscript figures attached. REVTEX v3.0. Accepted for publication in Phys. Rev. Lett. IRDIRT

    Remote Nanoimaging on Mars - Results of the Atomic Force Microscope Onboard NASA's Phoenix Mission

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7-August 11, 201

    Statistical and Dynamical Study of Disease Propagation in a Small World Network

    Full text link
    We study numerically statistical properties and dynamical disease propagation using a percolation model on a one dimensional small world network. The parameters chosen correspond to a realistic network of school age children. We found that percolation threshold decreases as a power law as the short cut fluctuations increase. We found also the number of infected sites grows exponentially with time and its rate depends logarithmically on the density of susceptibles. This behavior provides an interesting way to estimate the serology for a given population from the measurement of the disease growing rate during an epidemic phase. We have also examined the case in which the infection probability of nearest neighbors is different from that of short cuts. We found a double diffusion behavior with a slower diffusion between the characteristic times.Comment: 12 pages LaTex, 10 eps figures, Phys.Rev.E Vol. 64, 056115 (2001

    C-axis electronic Raman scattering in Bi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We report a c-axis-polarized electronic Raman scattering study of Bi_2Sr_2CaCu_2O_{8+\delta} single crystals. In the normal state, a resonant electronic continuum extends to 1.5 eV and gains significant intensity as the incoming photon energy increases. In the superconducting state, a coherence 2\Delta peak appears around 50 meV, with a suppression of the scattering intensity at frequencies below the peak position. The peak energy, which is higher than that seen with in-plane polarizations, signifies distinctly different dynamics of quasiparticle excitations created with out-of-plane polarization.Comment: 12 pages, REVTEX, 3 postscript figure

    C-axis Raman spectra of a normal plane-chain bilayer cuprate and the pseudogap

    Full text link
    We investigate the Raman spectra in the geometry where both incident and scattered photon polarizations are parallel to the z^\hat{z}-direction, for a plane-chain bilayer coupled via a single-particle tunneling tt_\perp. The Raman vertex is derived in the tight-binding limit and in the absence of Coulomb screening, the Raman intensity can be separated into intraband (t4\propto t_\perp^4) and interband (t2\propto t_\perp^2) transitions. In the small-tt_\perp limit, the interband part dominates and a pseudogap will appear as it does in the conductivity. Coulomb interactions bring in a two-particle coupling and result in the breakdown of intra- and interband separation. Nevertheless, when tt_\perp is small, the Coulomb screening (t4\propto t_\perp^4) has little effect on the intensity to which the unscreened interband transitions contribute most. In general, the total Raman spectra are strongly dependent on the magnitude of tt_\perp.Comment: 23 pages, 6 figures, submitted to Phys. Rev.
    corecore