1,261 research outputs found

    Generating realistic scaled complex networks

    Get PDF
    Research on generative models is a central project in the emerging field of network science, and it studies how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks, and for verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and some existing models can be fitted to an original network to produce a structurally similar replica, (c) use ReCoN to produce networks much larger than the original exemplar, and finally (d) discuss open problems and promising research directions. In a comparative experimental study, we find that ReCoN is often superior to many other state-of-the-art network generation methods. We argue that ReCoN is a scalable and effective tool for modeling a given network while preserving important properties at both micro- and macroscopic scales, and for scaling the exemplar data by orders of magnitude in size.Comment: 26 pages, 13 figures, extended version, a preliminary version of the paper was presented at the 5th International Workshop on Complex Networks and their Application

    A solid state light-matter interface at the single photon level

    Full text link
    Coherent and reversible mapping of quantum information between light and matter is an important experimental challenge in quantum information science. In particular, it is a decisive milestone for the implementation of quantum networks and quantum repeaters. So far, quantum interfaces between light and atoms have been demonstrated with atomic gases, and with single trapped atoms in cavities. Here we demonstrate the coherent and reversible mapping of a light field with less than one photon per pulse onto an ensemble of 10 millions atoms naturally trapped in a solid. This is achieved by coherently absorbing the light field in a suitably prepared solid state atomic medium. The state of the light is mapped onto collective atomic excitations on an optical transition and stored for a pre-programmed time up of to 1 mu s before being released in a well defined spatio-temporal mode as a result of a collective interference. The coherence of the process is verified by performing an interference experiment with two stored weak pulses with a variable phase relation. Visibilities of more than 95% are obtained, which demonstrates the high coherence of the mapping process at the single photon level. In addition, we show experimentally that our interface allows one to store and retrieve light fields in multiple temporal modes. Our results represent the first observation of collective enhancement at the single photon level in a solid and open the way to multimode solid state quantum memories as a promising alternative to atomic gases.Comment: 5 pages, 5 figures, version submitted on June 27 200

    Saturation of Cs2 Photoassociation in an Optical Dipole Trap

    Full text link
    We present studies of strong coupling in single-photon photoassociation of cesium dimers using an optical dipole trap. A thermodynamic model of the trap depletion dynamics is employed to extract absolute rate coefficents. From the dependence of the rate coefficient on the photoassociation laser intensity, we observe saturation of the photoassociation scattering probability at the unitarity limit in quantitative agreement with the theoretical model by Bohn and Julienne [Phys. Rev. A, 60, 414 (1999)]. Also the corresponding power broadening of the resonance width is measured. We could not observe an intensity dependent light shift in contrast to findings for lithium and rubidium, which is attributed to the absence of a p or d-wave shape resonance in cesium
    • …
    corecore