72 research outputs found

    Comparison of molecular typing methods for Candida albicans.

    Get PDF
    This is the published version. Copyright 1992 American Society for Microbiology.Four molecular approaches to determining the types of Candida albicans strains were compared. The strains used were those whose repeated DNA (ribosomal and mitochondrial) EcoRI restriction fragment length polymorphisms (RFLP) were determined by Stevens et al. (D. A. Stevens, F. C. Odds, and S. Scherer, Rev. Infect. Dis. 12:258-266, 1990). Scherer and Stevens (S. Scherer and D. A. Stevens, Proc. Natl. Acad. Sci. USA 85:1452-1456, 1988) used the same strains to examine the Southern blots of genomic EcoRI digests probed with the repeated sequence 27A. The results of these investigators were compared with determinations of RFLPs generated from repeated DNA by the enzyme HinfI and examination of the karyotypes of strains under two sets of conditions, one for the smaller chromosomes and one for the larger ones. Analysis of RFLPs of repeated DNA is most convenient but shows the lowest degree of resolution. Use of the repeated sequence and use of karyotype have very high resolution, but the former method is more convenient than the latter. HinfI digestion is more sensitive than EcoRI digestion but equally convenient. By using all four methods, separate types were identified for 18 of the 20 strains examined

    Post-translational Modification of Pregnane X Receptor

    Get PDF
    Pregnane x receptor (PXR, NR1I2) was originally characterized as a broad spectrum entero-hepatic xenobiotic ‘sensor’ and master-regulator of drug inducible gene expression. A compelling description of ligand-mediated gene activation has been unveiled in the last decade that firmly establishes this receptor’s central role in the metabolism and transport of xenobiotics in mammals. Interestingly, pharmacotherapy with potent PXR ligands produces several profound side effects including decreased capacities for gluconeogenesis, lipid metabolism, and inflammation; likely due to PXR-mediated repression of gene expression programs underlying these pivotal physiological functions. An integrated model is emerging that reveals a sophisticated interplay between ligand binding and the ubiquitylation, phosphorylation, SUMOylation, and acetylation status of this important nuclear receptor protein. These discoveries point to a key role for the post-translational modification of PXR in the selective suppression of gene expression, and open the door to the study of completely new modes of regulation of the biological activity of PXR

    Nuclear-receptor–mediated regulation of drug– and bile-acid–transporter proteins in gut and liver

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Drug Metabolism Reviews on 2015 Sep 2, available online: http://www.tandfonline.com/10.3109/03602532.2012.748793.Adverse drug events (ADEs) are a common cause of patient morbidity and mortality and are classically thought to result, in part, from variation in expression and activity of hepatic enzymes of drug metabolism. It is now known that alterations in the expression of genes that encode drug- and bile-acid–transporter proteins in both the gut and liver play a previously unrecognized role in determining patient drug response and eventual clinical outcome. Four nuclear receptor (NR) superfamily members, including pregnane X receptor (PXR, NR1I2), constitutive androstane receptor (NR1I3), farnesoid X receptor (NR1H4), and vitamin D receptor (NR1I1), play pivotal roles in drug- and bile-acid– activated programs of gene expression to coordinately regulate drug- and bile-acid transport activity in the intestine and liver. This review focuses on the NR-mediated gene activation of drug and bile-acid transporters in these tissues as well as the possible underlying molecular mechanisms

    Activation of the JAK-STAT pathway is necessary for desensitization of 5-HT2A receptor-stimulated phospholipase C signalling by olanzapine, clozapine and MDL 100907

    Get PDF
    This is the publisher's version, also available electronically from http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=5564880&fileId=S1461145708009590We have previously demonstrated that olanzapine-induced desensitization of 5-HT2A receptor-stimulated phospholipase C (PLC) activity is associated with increases in RGS7 protein levels both in vivo and in cells in culture, and the increase in RGS7 is dependent on activation of the JAK-STAT pathway in cells in culture. In the present study, we found that desensitization of 5-HT2A receptor-stimulated PLC activity induced by olanzapine is dependent on activation of the JAK-STAT pathway. Similar to olanzapine, clozapine-induced desensitization of 5-HT2A receptor signalling is accompanied by increases in RGS7 and activation of JAK2. Treatment with the selective 5-HT2A receptor antagonist MDL 100907 also increased RGS7 protein levels and JAK2 activation. Using a JAK2 inhibitor AG490, we found that clozapine and MDL 100907-induced increases in RGS7 are dependent on activation of the JAK-STAT pathway. Olanzapine, clozapine, and MDL 100907 treatment increased mRNA levels of RGS7. Using a chromatin immunoprecipitation assay we found STAT3 binding to the putative RGS7 promoter region. Taken together, olanzapine-induced activation of the JAK-STAT pathway, and STAT3 binding to the RGS7 gene could underlie the increase in RGS7 mRNA which could subsequently increase protein expression. Furthermore, the increase in RGS7 protein could play a role in the desensitization of 5-HT2A receptor signalling by terminating the activated Gαq/11 proteins more rapidly. Overall, our data suggest that the complete desensitization of 5-HT2A receptor-stimulated PLC activity by olanzapine, clozapine and MDL 100907 requires activation of the JAK-STAT pathway, which in turn increases RGS7 expression probably by direct transcriptional activity of STAT3

    Protein Targets of Thioacetamide Metabolites in Rat Hepatocytes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx400001xThioacetamide (TA) has long been known as a hepatotoxicant whose bioactivation requires S-oxidation to thioacetamide S-oxide (TASO) and then to the very reactive S,S-dioxide (TASO2). The latter can tautomerize to form acylating species capable of covalently modifying cellular nucleophiles including phosphatidylethanolamine (PE) lipids and protein lysine side chains. Isolated hepatocytes efficiently oxidize TA to TASO but experience little covalent binding or cytotoxicity because TA is a very potent inhibitor of the oxidation of TASO to TASO2. On the other hand hepatocytes treated with TASO show extensive covalent binding to both lipids and proteins accompanied by extensive cytotoxicity. In this work, we treated rat hepatocytes with [14C]-TASO and submitted the mitochondrial, microsomal and cytosolic fractions to 2DGE which revealed a total of 321 radioactive protein spots. To facilitate the identification of target proteins and adducted peptides we also treated cells with a mixture of TASO/[13C2D3]-TASO. Using a combination of 1DGE- and 2DGE-based proteomic approaches, we identified 187 modified peptides (174 acetylated, 50 acetimidoylated and 37 in both forms) from a total of 88 non-redundant target proteins. Among the latter, 57 are also known targets of at least one other hepatotoxin. The formation of both amide- and amidine-type adducts to protein lysine side chains is in contrast to the exclusive formation of amidine-type adducts with PE phospholipids. Thiobenzamide (TB) undergoes the same two-step oxidative bioactivation as TA, and it also gives rise to both amide and amidine adducts on protein lysine side chains but only amidine adducts to PE lipids. Despite their similarity in functional group chemical reactivity, only 38 of 62 known TB target proteins are found among the 88 known targets of TASO. The potential roles of protein modification by TASO in triggering cytotoxicity are discussed in terms of enzyme inhibition, protein folding and chaperone function, and the emerging role of protein acetylation in intracellular signaling and the regulation of biochemical pathways

    Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1

    Get PDF
    This is the published version. Copyright WileySynaptic plasticity is implemented by the interaction of glutamate receptors with PDZ domain proteins. Glutamate transporters provide the only known mechanism of clearance of glutamate from excitatory synapses, and GLT1 is the major glutamate transporter. We show here that GLT1 interacts with the PDZ domain protein PICK1, which plays a critical role in regulating the expression of glutamate receptors at excitatory synapses. A yeast two-hybrid screen of a neuronal library using the carboxyl tail of GLT1b yielded clones expressing PICK1. The GLT1b C-terminal peptide bound to PICK1 with high affinity (Ki = 6.5 ± 0.4 ÎŒm) in an in vitro fluorescence polarization assay. We also tested peptides based on other variants of GLT1 and other glutamate transporters. GLT1b co-immunoprecipitated with PICK1 from rat brain lysates and COS7 cell lysates derived from cells transfected with plasmids expressing PICK1 and GLT1b. In addition, expression of GLT1b in COS7 cells changed the distribution of PICK1, bringing it to the surface. GLT1b and PICK1 co-localized with each other and with synaptic markers in hippocampal neurons in culture. Phorbol ester, an activator of protein kinase C (PKC), a known PICK1 interactor, had no effect on glutamate transport in rat forebrain neurons in culture. However, we found that exposure of neurons to a myristolated decoy peptide with sequence identical to the C-terminal sequence of GLT1b designed to block the PICK1–GLT1b interaction rendered glutamate transport into neurons responsive to phorbol ester. These results suggest that the PICK1–GLT1b interaction regulates the modulation of GLT1 function by PKC.The authors are grateful to Sara Vasquez who provided excellent technical assistance in preparing the neuronal cultures. In addition, we are grateful for helpful discussions with Drs Gabriel Corfas, Michael Berne and Michael Robinson, to Dr Tom Schwarz for reading an early version of this manuscript, and to Dr Jeff Rothstein for providing an anti-cGLT1a antibody. We are also indebted to Dr Robinson for providing us with a detailed protocol for the biotinylation studies. This work was funded by grants from the Ron Shapiro Charitable Foundation (P.A.R.), the Muscular Dystrophy Association (P.A.R.), and National Institutes of Health research grant NS 40753 and a Mental Retardation Core Grant HD18655

    Biochemical characterization of PICK1, a PKC binding protein

    No full text
    Protein kinase C (PKC) is a family of serine-threonine kinases that are activated by a wide variety of hormones, neurotransmitters and growth factors. A single cell type contains multiple isoforms that are translocated to distinct and different subcellular sites upon mitogenic stimulus. Many different cellular responses are attributed to PKC activity though relatively few substrates or binding proteins have been definitively characterized. We used the hinge and catalytic domain of PKCα\alpha (PKC7) in a yeast two-hybrid screen to clone proteins that interact with C-kinase (PICKs). One protein which we have termed PICK1 may be involved in PKCα\alpha-specific function at the level of the nuclear membrane after activation. Binding of PICK1 to PKCα\alpha has been shown to be isoform specific as it does not bind to PKCÎČ\betaII or PKCα\alpha in the yeast two-hybrid system. PICK1 mRNA expression level is highest in testis and brain with lower levels of expression in skeletal muscle, heart, kidney, lung and liver. PICK1 protein contains five PKC consensus phosphorylation sites and serves as an in vitro substrate for PKC. The PICK1 protein also contains a P-Loop motif that has been shown to bind ATP or GTP in the Ras family of oncoproteins as well as the G-Protein family. Proteins which bind ATP or GTP using this motif all have some sort of catalytic function although none has been identified for PICK1 as yet. PICK1 contains a DHR/GLGF motif at the N-terminus of the protein. The DHR/GLGF motif is contained in a number of recently described proteins and has been shown to mediate protein-protein interactions at the level of membranes and cytoskeleton. When both PKCα\alpha and PICK1 are co-expressed in Cos1 cells the two proteins co-localize to the perinucleus in immunoflouresence studies and co-immunoprecipitate. The binding site for PKC7 has been localized to amino acids 1-358 on PICK1 which contains the DHR/GLGF motif. Binding of PICK1 to PKCα\alpha requires the hinge and C-terminal domains of PKCα\alpha. In vitro, PICK1 binds to PKCα\alpha and inhibits its activity as assayed by myelin basic protein phosphorylation. PICK1 also binds to TIS21, a primary response gene that is expressed in response to phorbol ester and growth factor treatment. The Caenorhabditis elegans homologue of PICK1 has been cloned and sequenced revealing a high degree of conservation in the DHR/GLGF motif. A more C-terminal region also shows a high degree of conservation, and the C. elegans PICK1 homologue binds to PKC7 suggesting a conservation of function. Taken together these results suggest that PICK1 may be involved in a PKCα\alpha-specific function at the level of the nuclear membrane

    Water Conservation of the Kangaroo Rat, \u3ci\u3eDipodomys ordii\u3c/i\u3e

    Get PDF
    Kangaroo rats (Dipodomys spp.) have long been known for their water-conserving abilities. Dipodomys ordii is the most widely distributed kangaroo rat in the United States and its range extends through many climates. Five D. ordii from the Nebraska Sand Hills were used in this experiment. The results of this study indicate that Dipodomys ordii is not independent of free water, but does have a urine concentrating ability comparable to D. merriami, a desert-dwelling species. The individuals showed variability in their response to water deprivation
    • 

    corecore