19 research outputs found

    The H-alpha Luminosity Function and Star Formation Rate Volume Density at z=0.8 from the NEWFIRM H-alpha Survey

    Full text link
    [Abridged] We present new measurements of the H-alpha luminosity function (LF) and SFR volume density for galaxies at z~0.8. Our analysis is based on 1.18μ\mum narrowband data from the NEWFIRM H-alpha Survey, a comprehensive program designed to capture deep samples of intermediate redshift emission-line galaxies using narrowband imaging in the near-infrared. The combination of depth (1.9×1017\approx1.9\times10^{-17} erg s1^{-1} cm2^{-2} in H-alpha at 3σ\sigma) and areal coverage (0.82 deg2^2) complements other recent H-alpha studies at similar redshifts, and enables us to minimize the impact of cosmic variance and place robust constraints on the shape of the LF. The present sample contains 818 NB118 excess objects, 394 of which are selected as H-alpha emitters. Optical spectroscopy has been obtained for 62% of the NB118 excess objects. Empirical optical broadband color classification is used to sort the remainder of the sample. A comparison of the LFs constructed for the four individual fields reveals significant cosmic variance, emphasizing that multiple, widely separated observations are required. The dust-corrected LF is well-described by a Schechter function with L*=10^{43.00\pm0.52} ergs s^{-1}, \phi*=10^{-3.20\pm0.54} Mpc^{-3}, and \alpha=-1.6\pm0.19. We compare our H-alpha LF and SFR density to those at z<1, and find a rise in the SFR density \propto(1+z)^{3.4}, which we attribute to significant L* evolution. Our H-alpha SFR density of 10^{-1.00\pm0.18} M_sun yr^{-1} Mpc^{-3} is consistent with UV and [O II] measurements at z~1. We discuss how these results compare to other H-alpha surveys at z~0.8, and find that the different methods used to determine survey completeness can lead to inconsistent results. This suggests that future surveys probing fainter luminosities are needed, and more rigorous methods of estimating the completeness should be adopted as standard procedure.Comment: 19 pages (emulate-ApJ format), 16 figures, 5 tables, published in ApJ. Modified to match ApJ versio

    Empirical ugri-UBVRc Transformations for Galaxies

    Full text link
    We present empirical color transformations between Sloan Digital Sky Survey ugri and Johnson-Cousins UBVRc photometry for nearby galaxies (D < 11 Mpc). We use the Local Volume Legacy (LVL) galaxy sample where there are 90 galaxies with overlapping observational coverage for these two filter sets. The LVL galaxy sample consists of normal, non-starbursting galaxies. We also examine how well the LVL galaxy colors are described by previous transformations derived from standard calibration stars and model-based galaxy templates. We find significant galaxy color scatter around most of the previous transformation relationships. In addition, the previous transformations show systematic offsets between transformed and observed galaxy colors which are visible in observed color-color trends. The LVL-based galaxygalaxy transformations show no systematic color offsets and reproduce the observed color-color galaxy trends.Comment: Accepted for publication in MNRAS (9 pages, 6 figures, 4 tables

    Spitzer Local Volume Legacy (LVL) SEDs and Physical Properties

    Full text link
    We present the panchromatic spectral energy distributions (SEDs) of the Local Volume Legacy (LVL) survey which consists of 258 nearby galaxies (D<D<11 Mpc). The wavelength coverage spans the ultraviolet to the infrared (1500 A˚\textrm{\AA} to 24 μ\mum) which is utilized to derive global physical properties (i.e., star formation rate, stellar mass, internal extinction due to dust.). With these data, we find color-color relationships and correlated trends between observed and physical properties (i.e., optical magnitudes and dust properties, optical color and specific star formation rate, and ultraviolet-infrared color and metallicity). The SEDs are binned by different galaxy properties to reveal how each property affects the observed shape of these SEDs. In addition, due to the volume-limited nature of LVL, we utilize the dwarf-dominated galaxy sample to test star formation relationships established with higher-mass galaxy samples. We find good agreement with the star-forming "main-sequence" relationship, but find a systematic deviation in the infrared "main-sequence" at low luminosities. This deviation is attributed to suppressed polycyclic aromatic hydrocarbon (PAH) formation in low metallicity environments and/or the destruction of PAHs in more intense radiation fields occurring near a suggested threshold in sSFR at a value of log(sSFRsSFR) \sim -10.2.Comment: Accepted for publication in MNRAS (15 pages, 14 figures, 1 table

    Infrared Diagnostics for the Extended 12 micron Sample of Seyferts

    Full text link
    We present an analysis of Spitzer IRS spectroscopy of 83 active galaxies from the extended 12 micron sample. We find rank correlations between several tracers of star formation which suggest that (1) the PAH feature is a reliable tracer of star formation, (2) there is a significant contribution to the heating of the cool dust by stars, (3) the H2_2 emission is also primarily excited by star formation. The 55-90 vs. 20-30 spectral index plot is also a diagnostic of the relative contribution of Starburst to AGN. We see there is a large change in spectral index across the sample. Thus, the contribution to the IR spectrum from the AGN and starburst components can be comparable in magnitude but the relative contribution also varies widely across the sample. We find rank correlations between several AGN tracers. We search for correlations between AGN and Starburst tracers and we conclude that the AGN and Starburst tracers are not correlated. This is consistent with our conclusion that the relative strength of the AGN and Starburst components varies widely across the sample. Thus, there is no simple link between AGN fueling and Black Hole Growth and star formation in these galaxies. The distribution of Sil 10 micron and 18 micron strengths is consistent with the clumpy torus models of Sirocky et al. We find a rank correlation between the [NeV] 14 micron line and the 6.7 micron continuum which may be due to an extended component of hot dust. The Sy 2s with a Hidden Broad Line Region (HBLR) have a higher ratio of AGN to Starburst contribution to the SED than Sy 2s without an HBLR. This may contribute to the detection of the HBLR in polarized light. The Sy 2s with an HBLR are more similar to the Sy 1s than they are to the Sy 2s without an HBLR

    The Spitzer Local Volume Legacy (LVL) Global Optical Photometry

    Full text link
    We present the global optical photometry of 246 galaxies in the Local Volume Legacy (LVL) survey. The full volume-limited sample consists of 258 nearby (D < 11 Mpc) galaxies whose absolute B-band magnitude span a range of -9.6 < M_B < -20.7 mag. A composite optical (UBVR) data set is constructed from observed UBVR and SDSS ugriz imaging, where the ugriz magnitudes are transformed into UBVR. We present photometry within three galaxy apertures defined at UV, optical, and IR wavelengths. Flux comparisons between these apertures reveal that the traditional optical R25 galaxy apertures do not fully encompass extended sources. Using the larger IR apertures we find color-color relationships where later-type spiral and irregular galaxies tend to be bluer than earlier-type galaxies. These data provide the missing optical emission from which future LVL studies can construct the full panchromatic (UV-optical-IR) spectral energy distributions.Comment: Accepted for publication in MNRAS (9 pages, 5 figures, 5 tables

    The H-alpha Luminosity Function and Star Formation Rate Volume Density at z=0.8 from the NEWFIRM H-alpha Survey

    Full text link
    [Abridged] We present new measurements of the H-alpha luminosity function (LF) and SFR volume density for galaxies at z~0.8. Our analysis is based on 1.18μ\mum narrowband data from the NEWFIRM H-alpha Survey, a comprehensive program designed to capture deep samples of intermediate redshift emission-line galaxies using narrowband imaging in the near-infrared. The combination of depth (1.9×1017\approx1.9\times10^{-17} erg s1^{-1} cm2^{-2} in H-alpha at 3σ\sigma) and areal coverage (0.82 deg2^2) complements other recent H-alpha studies at similar redshifts, and enables us to minimize the impact of cosmic variance and place robust constraints on the shape of the LF. The present sample contains 818 NB118 excess objects, 394 of which are selected as H-alpha emitters. Optical spectroscopy has been obtained for 62% of the NB118 excess objects. Empirical optical broadband color classification is used to sort the remainder of the sample. A comparison of the LFs constructed for the four individual fields reveals significant cosmic variance, emphasizing that multiple, widely separated observations are required. The dust-corrected LF is well-described by a Schechter function with L*=10^{43.00\pm0.52} ergs s^{-1}, \phi*=10^{-3.20\pm0.54} Mpc^{-3}, and \alpha=-1.6\pm0.19. We compare our H-alpha LF and SFR density to those at z<1, and find a rise in the SFR density \propto(1+z)^{3.4}, which we attribute to significant L* evolution. Our H-alpha SFR density of 10^{-1.00\pm0.18} M_sun yr^{-1} Mpc^{-3} is consistent with UV and [O II] measurements at z~1. We discuss how these results compare to other H-alpha surveys at z~0.8, and find that the different methods used to determine survey completeness can lead to inconsistent results. This suggests that future surveys probing fainter luminosities are needed, and more rigorous methods of estimating the completeness should be adopted as standard procedure.Comment: 19 pages (emulate-ApJ format), 16 figures, 5 tables, published in ApJ. Modified to match ApJ versio

    The Wyoming Survey for H-alpha. III. A Multi-wavelength Look at Attenuation by Dust in Galaxies out to z~0.4

    Full text link
    We report results from the Wyoming Survey for H-alpha (WySH), a comprehensive four-square degree survey to probe the evolution of star-forming galaxies over the latter half of the age of the Universe. We have supplemented the H-alpha data from WySH with infrared data from the Spitzer Wide-area Infrared Extragalactic (SWIRE) Survey and ultraviolet data from the Galaxy Evolution Explorer (GALEX) Deep Imaging Survey. This dataset provides a multi-wavelength look at the evolution of the attenuation by dust, and here we compare a traditional measure of dust attenuation (L(TIR)/L(FUV)) to a diagnostic based on a recently-developed robust star formation rate (SFR) indicator, [H-alpha_obs+24-micron]/H-alpha_obs. With such data over multiple epochs, the evolution in the attenuation by dust with redshift can be assessed. We present results from the ELAIS-N1 and Lockman Hole regions at z~0.16, 0.24, 0.32 and 0.40. While the ensemble averages of both diagnostics are relatively constant from epoch to epoch, each epoch individually exhibits a larger attenuation by dust for higher star formation rates. Hence, an epoch to epoch comparison at a fixed star formation rate suggests a mild decrease in dust attenuation with redshift.Comment: 30 pages, 9 figure
    corecore