1,285 research outputs found
Phenomenology of the minimal supersymmetric extension of the standard model
We discuss the minimal supersymmetric extension of
the standard model. Gauge couplings unify as in the MSSM, even if the scale of
breaking is as low as order TeV and the model can be
embedded into an SO(10) grand unified theory. The phenomenology of the model
differs in some important aspects from the MSSM, leading potentially to rich
phenomenology at the LHC. It predicts more light Higgs states and the mostly
left CP-even Higgs has a mass reaching easily 125 GeV, with no constraints on
the SUSY spectrum. Right sneutrinos can be the lightest supersymmetric
particle, changing all dark matter constraints on SUSY parameter space. The
model has seven neutralinos and squark/gluino decay chains involve more
complicated cascades than in the MSSM. We also discuss briefly low-energy and
accelerator constraints on the model, where the most important limits come from
recent searches at the LHC and upper limits on lepton flavour violation.Comment: 46 pages, 11 figure
Crystal Symmetry Lowering in Chiral Multiferroic BaTaFeSiO observed by X-Ray Magnetic Scattering
Chiral multiferroic langasites have attracted attention due to their
doubly-chiral magnetic ground state within an enantiomorphic crystal. We report
on a detailed resonant soft X-ray diffraction study of the multiferroic
BaTaFeSiO at the Fe and oxygen edges. Below
() we observe the satellite reflections ,
, and where . The dependence of the scattering intensity on X-ray polarization and
azimuthal angle indicate that the odd harmonics are dominated by the
out-of-plane (-axis) magnetic dipole while the
originates from the electron density distortions accompanying magnetic order.
We observe dissimilar energy dependences of the diffraction intensity of the
purely magnetic odd-harmonic satellites at the Fe edge. Utilizing
first-principles calculations, we show that this is a consequence of the loss
of threefold crystal symmetry in the multiferroic phase
Role of magnetic and orbital ordering at the metal-insulator transition in NdNiO3
Soft x-ray resonant scattering at the Ni L2,3 edges is used to test models of
magnetic and orbital-ordering below the metal-insulator transition in NdNiO3.
The large branching ratio of the L3 to L2 intensities of the (1/2,0,1/2)
reflection and the observed azimuthal angle and polarization dependence
originates from a non collinear magnetic structure. The absence of an orbital
signal and the non collinear magnetic structure show that the nickelates are
materials for which orbital ordering is absent at the metal-insulator
transition.Comment: 10 pages, 4 figures, Physical Review B rapid communication, to be
publishe
Doping and temperature dependence of Mn 3d states in A-site ordered manganites
We present a systematic study of the electronic structure in A-site ordered
manganites as function of doping and temperature. The energy dependencies
observed with soft x-ray resonant diffraction (SXRD) at the Mn L_{2,3} edges
are compared with structural investigations using neutron powder diffraction as
well as with cluster calculations. The crystal structures obtained with neutron
powder diffraction reflect the various orbital and charge ordered phases and
show an increase of the Mn-O-Mn bond angle as function of doping and
temperature. Cluster calculations show that the observed spectral changes in
SXRD as a function of doping are more pronounced than expected from an increase
in bandwitdh due to the increase in Mn-O-Mn bond angle, and are best described
by holes that are distributed at the neighbouring oxygen ions. These holes are
not directly added to the Mn 3d shell, but centered at the Mn site. In
contrast, the spectral changes in SXRD as function of temperature are best
described by an increase of magnetic correlations. This demonstrates the strong
correlations between orbitals and magnetic moments of the 3d states
Chiral properties of hematite ({\alpha}-Fe2O3) inferred from resonant Bragg diffraction using circularly polarized x-rays
Chiral properties of the two phases - collinear motif (below Morin transition
temperature, TM=250 K) and canted motif (above TM) - of magnetically ordered
hematite ({\alpha}-Fe2O3) have been identified in single crystal resonant x-ray
Bragg diffraction, using circular polarized incident x-rays tuned near the iron
K-edge. Magneto-electric multipoles, including an anapole, fully characterize
the high-temperature canted phase, whereas the low-temperature collinear phase
supports both parity-odd and parity-even multipoles that are time-odd. Orbital
angular momentum accompanies the collinear motif, while it is conspicuously
absent with the canted motif. Intensities have been successfully confronted
with analytic expressions derived from an atomic model fully compliant with
chemical and magnetic structures. Values of Fe atomic multipoles previously
derived from independent experimental data, are shown to be completely
trustworthy
- …