62 research outputs found

    Validation of volumetric and single-slice MRI adipose analysis using a novel fully automated segmentation method.

    Get PDF
    PURPOSE: To validate a fully automated adipose segmentation method with magnetic resonance imaging (MRI) fat fraction abdominal imaging. We hypothesized that this method is suitable for segmentation of subcutaneous adipose tissue (SAT) and intra-abdominal adipose tissue (IAAT) in a wide population range, easy to use, works with a variety of hardware setups, and is highly repeatable. MATERIALS AND METHODS: Analysis was performed comparing precision and analysis time of manual and automated segmentation of single-slice imaging, and volumetric imaging (78-88 slices). Volumetric and single-slice data were acquired in a variety of cohorts (body mass index [BMI] 15.6-41.76) including healthy adult volunteers, adolescent volunteers, and subjects with nonalcoholic fatty liver disease and lipodystrophies. A subset of healthy volunteers was analyzed for repeatability in the measurements. RESULTS: The fully automated segmentation was found to have excellent agreement with manual segmentation with no substantial bias across all study cohorts. Repeatability tests showed a mean coefficient of variation of 1.2 ± 0.6% for SAT, and 2.7 ± 2.2% for IAAT. Analysis with automated segmentation was rapid, requiring 2 seconds per slice compared with 8 minutes per slice with manual segmentation. CONCLUSION: We demonstrate the ability to accurately and rapidly segment regional adipose tissue using fat fraction maps across a wide population range, with varying hardware setups and acquisition methods. J. Magn. Reson. Imaging 2015;41:233-241. © 2014 Wiley Periodicals, Inc

    Ultrasound-assessed perirenal fat is related to increased ophthalmic artery resistance index in HIV-1 patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The introduction of highly active antiretroviral therapy (HAART) has dramatically changed the prognosis of human immunodeficiency virus (HIV) infection, with a significant decline in morbidity and mortality.</p> <p>Changes in body fat distribution are a common finding in individuals with HIV infection being treated with antiretrovirals, and this condition (collectively termed lipodystrophy syndrome) is associated with depletion of subcutaneous fat, increased triglycerides and insulin resistance. Obesity, particularly visceral obesity, is associated with increased risk of cardiovascular disease. Therefore, estimating visceral fat distribution is important in identifying subjects at high risk for cardiovascular disease.</p> <p>The aim of our study was to evaluate whether perirenal fat thickness (PRFT), a parameter of central obesity, is related to ophthalmic artery resistance index (OARI), an index of occlusive carotid artery disease in HIV-1 infected patients.</p> <p>Methods</p> <p>We enrolled 88 consecutive HIV-1-infected patients receiving highly active antiretroviral therapy for more than 12 months, in a prospective cohort study. Echographically measured PRFT and OARI, as well as serum metabolic parameters, were evaluated. PRFT and OARI were measured by 3.75 MHz convex and 7.5 MHz linear probe, respectively.</p> <p>Results</p> <p>The means of PRFT and OARI in HIV-1-infected patients with visceral obesity was considerably higher than in patients without it (p < 0.0001 and p < 0.001, respectively). Using the average OARI as the dependent variable, total serum cholesterol level, HDL, triglycerides, glycemia, sex, blood pressure, age and PRFT were independent factors associated with OARI. A PRFT of 6.1 mm was the most discriminatory value for predicting an OARI > 0.74 (sensitivity 78.9%, specificity 82.8%).</p> <p>Conclusions</p> <p>Our data indicate that ultrasound assessment of PRFT may have potential as a marker of increased endothelial damage with specific involvement of the ocular vascular region in HIV-1-infected patients.</p

    Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women

    Get PDF
    Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = −0.631; p<0.0001). In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine), 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA) cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is “anaplerotic stress” emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery

    Estimulação cerebral na promoção da saúde e melhoria do desempenho físico

    Full text link
    corecore