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Original Research

Validation of Volumetric and Single-Slice MRI
Adipose Analysis Using a Novel Fully Automated
Segmentation Method

Bryan T. Addeman, BSc,1 Shelby Kutty, MD,2,3 Thomas G. Perkins, PhD,2,4

Abraam S. Soliman, MSc,5 Curtis N. Wiens, MSc,6 Colin M. McCurdy, BSc,1

Melanie D. Beaton, MD,7 Robert A. Hegele, MD,8 and Charles A. McKenzie, PhD1,5,6,8*

Purpose: To validate a fully automated adipose segmen-
tation method with magnetic resonance imaging (MRI) fat
fraction abdominal imaging. We hypothesized that this
method is suitable for segmentation of subcutaneous adi-
pose tissue (SAT) and intra-abdominal adipose tissue
(IAAT) in a wide population range, easy to use, works with
a variety of hardware setups, and is highly repeatable.

Materials and Methods: Analysis was performed com-
paring precision and analysis time of manual and auto-
mated segmentation of single-slice imaging, and
volumetric imaging (78–88 slices). Volumetric and single-
slice data were acquired in a variety of cohorts (body
mass index [BMI] 15.6–41.76) including healthy adult vol-
unteers, adolescent volunteers, and subjects with nonal-
coholic fatty liver disease and lipodystrophies. A subset of
healthy volunteers was analyzed for repeatability in the
measurements.

Results: The fully automated segmentation was found
to have excellent agreement with manual segmentation
with no substantial bias across all study cohorts. Repeat-
ability tests showed a mean coefficient of variation of
1.2 6 0.6% for SAT, and 2.7 6 2.2% for IAAT. Analysis

with automated segmentation was rapid, requiring 2 sec-
onds per slice compared with 8 minutes per slice with
manual segmentation.

Conclusion: We demonstrate the ability to accurately
and rapidly segment regional adipose tissue using fat
fraction maps across a wide population range, with vary-
ing hardware setups and acquisition methods.

Key Words: abdominal fat; intra-abdominal fat; image
processing; subcutaneous fat; visceral adipose tissue;
software
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ALONG WITH THE PREVALENCE OF OBESITY, the
clinical demand to measure and track adipose tissue
distribution increases (1). Adipose tissue has long
been regarded as a storage reservoir for triglycerides;
however, recent studies suggest that intra-abdominal
adipose tissue (IAAT) depots play a more active role in
metabolism, impacting a wide variety of clinical risk
factors including fasting glucose levels, serum triglyc-
erides, and cholesterol (2,3). IAAT is further associ-
ated with type 2 diabetes, cardiovascular disease,
hepatic steatosis, hypertension, hyperlipidemia, and
all-cause mortality (4–6), escalating the need to quan-
tify regional distribution rather than total adipose
tissue.

Adipose quantification using magnetic resonance
imaging (MRI) and computed tomography (CT) are
accurate and effective measurement methods for fat
distribution (7,8). In abdominal fat imaging, acquiring
images of the entire visceral cavity without respiratory
motion remains a concern for both CT and MRI due to
radiation dose (CT), or long scan durations (MRI). As
a result, many current clinical quantification techni-
ques use a single transverse slice located at the L2–L5
vertebrae region for use with manual segmentation,
as adipose tissue distribution in that slice correlates
with total IAAT (9–13). However, single-slice sampling
strategies fail when predicting large variations in indi-
vidual internal fat content (14) and weight loss (15).
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For accurate determination of an individual’s IAAT,
and intersubject comparison, only multislice imaging
will give precise results (16).

Multislice studies which aim to quantify the entire
visceral cavity can produce >100 slices per subject,
creating large amounts of data for analysis. Manual
and semiautomated segmentation can take 3–30
minutes per slice for a trained observer (17), making
the use of automated or more efficient semiautomated
segmentation essential for volumetric analysis.

With careful selection of image acquisition parame-
ters in techniques such as IDEAL-IQ (18), LAVA-Flex
(19), and multipoint Dixon (20) imaging a 3D fat frac-
tion ratio map (fat/[fatþwater]) can be measured rep-
resenting voxel-by-voxel fat fraction values ranging
from 0–100% fat (21). Adipose tissue is composed of
�85% fat, 13% water, and 2% proteins (22) and can
therefore be differentiated from other lipid-containing
tissues in vivo by its high fat fraction values (23). Fat
fraction values thus provide a reproducible measure
of adipose tissue that does not suffer from relative
intensity scales or inhomogeneous image intensities
that are inherent with MRI, and can therefore be used
for automated quantification with a variety of hard-
ware setups.

Furthermore, water–fat MRI techniques can be com-
bined with accelerated imaging techniques such as
parallel MRI (24–26) to rapidly acquire large image
volumes. Time constraints become most apparent
when performing abdominal imaging where patients
are required to hold their breath for the duration of
the scan to minimize breathing related artifact. The
use of accelerated water–fat imaging techniques
allows imaging of the entire visceral cavity from the
diaphragm to the pelvic floor within the time of 1
breath-hold (�24 seconds).

Here we propose a novel software package named
AdipoQuant for the automated quantification of total
adipose tissue (TAT), SAT, and IAAT in the abdomen.
The main objective was to develop an automated seg-
mentation method that works with a variety of body
types and abnormal fat distributions and assess its
precision, accuracy, and repeatability.

MATERIALS AND METHODS

Subjects

Following institutional human studies research ethics
board approval and obtaining informed consent, in
vivo data were obtained from 36 subjects: 8 healthy

volunteers, 16 with nonalcoholic fatty liver disease
(NAFLD), 4 with Dunnigan-type familial partial lipo-
dystrophy (FPLD2), and 8 adolescent subjects. Sub-
ject statistics are shown in Table 1. NAFLD subjects
are significant for automated segmentation, as the
exclusion of ectopic fat is required, while FPLD2 sub-
jects have wildly varying fat composition with some
having nearly nonexistent subcutaneous fat.

MRI Acquisition

Table 2 describes the MR acquisition details used for
each validation cohort.

Healthy Adult MRI Acquisition

Entire visceral cavity scans were acquired during this
study with the following parameters. Transverse slices
were collected extending from the dome of the liver to
the tip of the femoral heads using an investigational
version of a parallel MRI accelerated IDEAL sequence
on a GE 3.0 T MR750 (GE Healthcare, Waukesha, WI)
and a 32-coil torso array (Neo Coil, Pewaukee, WI).
The subject’s arms were placed at their side and sepa-
rated from the torso using a foam pad to ensure that
the arms were accurately excluded from the abdomi-
nal segmentation.

A single acquisition with this investigational version
of IDEAL results in the creation of four image series:
T2* corrected fat-only, T2* corrected water-only, fat
fraction map, and R2* map ([1/T2*]).

FPLD and NAFLD Adult MRI Acquisition

Four FPLD2 and 16 NAFLD datasets available from
prior studies were acquired using the following gen-
eral scan parameters. Transverse images were col-
lected at the L4 vertebra, mid-pelvis, mid-thigh, and
mid-calf using an investigational version of the IDEAL
sequence (Table 1). Data were acquired with a variety
of receive coils (body coil, 8-coil array, and 32-coil
array) on a GE 3.0 T MR750 (GE Healthcare).

Adolescent MRI Acquisition

Eight adolescent volunteers were imaged using a 1.5T
MRI system (Achieva; Philips Healthcare, Best, The
Netherlands). The abdomen was imaged from below
the femoral head to above the diaphragm. Two MR
image datasets were acquired using a basic breath-
hold axial 3D mDIXON protocol (23 sec) and a
volunteer-matched field of view (FOV) in the RL and

Table 1

Validation Cohort Details

Validation cohort n Gender

Age (years)

mean [range]

BMI (kg/m2)

mean [range]

Healthy volunteers 8 5 Male/3 Female 31 [24–45] 24.6 [22.3–28.1]

NAFLD 16 9 Male/7 Female 49 [27–72] 31.6 [23.0–41.8]

FPLD2 4 4 Female 38 [32–51] 24.2 [20.3–27.6]

Adolescent 8 4 Male/4 Female 11 [7–19] 22.8 [15.6–31.5]

NAFLD: nonalocholic fatty liver disease; FPLD2: Dunnigan-type familial partial lipodystrophy.
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AP directions to minimize the breath-hold time (17 sec
or greater). Fat, water, in-phase, and opposed phase
images were reconstructed for each dataset.

Automated Segmentation Method

Step 1: Body Volume Mask

The first objective was to identify a rough mask of the
total fat and water tissue volume. This required sepa-
ration of fat and water tissue from background noise
and MR signal voids within the body in areas such as
the lungs, bowels, and bone. First, the fat-only and
water-only images were added together creating
images where fat and water containing tissue such as
adipose, organs, and muscles appeared bright (Fig.
1A). An adaptive k-means clustering algorithm was
implemented which clustered pixel intensities into
three classes: low, medium, and high intensity (Fig.
1B). Then the lowest intensity class was discarded as
noise (air- and bone-filled regions), while the medium
and high intensity classes were then converted to a
binary tissue volume mask (Fig. 1C). A hole filling
algorithm was used to fill small voids in the tissue vol-
ume mask.

Step 2: Total Adipose Tissue Mask

The tissue volume mask was then applied to the fat
fraction map (Fig. 2A) in order to remove nontissue
noise voxels. Voxels within the tissue volume mask

with fat fraction values higher than 70% fat were
located using a simple threshold (Fig. 2B). This high
fat fraction threshold avoided including lipid-rich tis-
sues such as bone marrow or steatotic liver. In some
subjects, these tissues may have elevated fat fractions
up to 50–60%, which would still be excluded by the
70% fat fraction threshold. The threshold resulted in
a fat mask containing only adipose tissue, but
excluded low fat fraction boundary voxels of adipose
tissue which had partial amounts of adipose and
water–tissue imaged in the same voxel. This exclusion
of boundary adipose tissue due to low fat fraction
value is known as partial volume error (PVE). To
account for PVE, regions connected to the 70% adi-
pose mask with greater than 40% fat fraction were
recovered. The adipose threshold and PVE correction
were combined to create the total adipose tissue (TAT)
mask (Fig. 2B). In subjects where a R2* map (Fig. 2C)
was available, bone marrow and bowels were removed
by recognizing areas with much higher R2* values
than the muscle, organs and adipose tissue. Figure
2C shows this exclusion.

Step 3: Segmentation of Adipose Tissue Regions

Similar to locating adipose tissue, muscle and organ
tissue were found by locating voxels in the volume
mask below 50% fat fraction (Fig. 3A). The resulting
water mask represented only water tissue proximal to
the SAT; the distal edge serves as a general boundary

Table 2

Magnetic Resonance Imaging Acquisition Details

Validation cohort

Acquisition

sequence

Field

strength (T) MRI type

Resolution

[x,y](mm)

Slice thickness

(mm)

Image

volume

[x,y,z](cm)

Acquisition

time(s)

Healthy volunteers (full

visceral volume)

IDEAL-IQ 3 GE MR750 [3.2, 3.2] 3.0–5.0 [48, 32, 36] 24–26

NAFLD/FPLD2/healthy

volunteers

(single-slice)

IDEAL-IQ 3 GE MR750 [2.1, 2.6] 4.0–10.0 [48, 38, 22] 20

Adolescent mDixon 1.5 Philips Achieva [3.2, 3.2] 4.0 [48, 34, 40] 17–23

The parameters above were varied among different validation cohorts. In addition, all image acquisitions used an elliptical k-space shutter

and a parallel MRI acceleration factor of 3.3.

Figure 1. Tissue volume masking illustrates the first step in the segmentation process, segmenting tissue from background noise.
(A) The in-phase fatþwater source image stack is segmented into (B) low, medium, and high-intensity classes using a Kmeans clus-
tering algorithm. The lowest signal intensity class is discarded as air/noise and holes are filled in the remaining images to create a (C)

binary tissue volume mask (solid). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Automated MRI Adipose Tissue Analysis 235

http://wileyonlinelibrary.com


of the peritoneum. The water mask was converted
into polar coordinates such that the distal edge of the
tissue appears along the bottom of the image (Fig.
3B). A 3D surface was then fitted to the distalmost
edge of each slice’s polar water with caution to con-
strain the smoothness such that areas without water
tissue directly adjacent to the SAT were bridged. This
surface was then converted back into Cartesian coor-
dinates and enclosed, which resulted in a mask of the
intra-abdominal cavity. This mask was then used to
split the TAT into SAT and IAAT (Fig. 3C).

Step 4: Calculation of Adipose Tissue Volumes and
Tissue Visualization

Adipose volumes were calculated by summing the fat
fraction values from each voxel included in the seg-
mented SAT and IAAT. These values were then con-
verted into volumes using a voxel-to-volume
conversion factor defined by the acquisition
parameters.

Lastly, 3D tissue visualizations of the SAT, IAAT,
and water tissue were created (Fig. 4). Each tissue
component was rendered separately and was available
for viewing as a movable 3D model showing a combi-

nation of tissues, or each segmented volume
separately.

Method Comparison

For comparison with automated segmentation results,
manual segmentation was performed on T2*-
corrected fat-only images by a trained observer
(B.T.A.) using a previously validated manual segmen-
tation approach (27) designed to quantify and seg-
ment subcutaneous and intra-abdominal adipose
tissue. The manual segmentation approach works as
follows. First, a single fat-only image is loaded into
ImageJ (NIH, Bethesda, MD). The observer selects a
point on the SAT and uses this as the seed point for
the "Connected Threshold Grower" plug-in. The user
then defines a lower and upper intensity threshold for
adipose tissue based on observation of the image.
These threshold values may be altered multiple times
by the user to get the desired results. The connected
threshold grower then identifies all pixels that are
connected to the seed point and have intensity values
within the threshold range. Unconnected regions
must be connected manually by drawing a thin line
on the image between adjacent regions. This is an

Figure 2. Adipose tissue identification process. The tissue volume mask (yellow) located in Fig. 1 is now applied to the fat
fraction images (A), masking out the noise. A hard threshold removing all fat fractions below 70% fat is then applied (B). To
account for PVEs, regions connected to the 70% adipose mask with greater than 40% fat fraction were recovered (blue) using
boundary dilation. In subjects where a R2* map (C) was available, bone marrow and bowels were removed by recognizing
areas with much higher R2* values than the muscle, organs, and adipose tissue.

Figure 3. Segmentation of subcutaneous from intra-abdominal adipose tissue. The distal boundaries of the abdominal and
back muscles highlighted in green are recognized in this automated method as the boundary between intra-abdominal and
subcutaneous adipose tissue. This outer boundary is located by converting the water mask (A) into polar coordinates (B)

such that the distalmost muscle boundary (green) appears along the bottom of the image and can be more easily segmented.
A surface is fit over this boundary for each slice, converted back into Cartesian coordinates, and applied to the adipose tissue
mask (C). Adipose tissue inside this boundary is labeled as intra-abdominal adipose and outside the boundary is labeled
subcutaneous adipose.
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iterative process where the user draws the line, and
then runs the connected threshold grower again to
check for accuracy. The result is a binary mask of the
TAT. The user then disconnects the SAT from IAAT by
manually drawing segmentation lines on the image
where SAT and IAAT are adjoined.

The processing time per slice for both automated
and manual segmentation methods was measured.
Since the automated method works on volumetric
data, the total processing time was divided by the
number of slices in the dataset.

Repeatability and Reproducibility

Four healthy adult volunteers (four male, mean BMI
25.9 6 2.5, range 22.4–28.1) were each imaged twice
on Day 1 and twice on Day 7 in order to assess
repeatability and reproducibility of full abdominal
SAT, IAAT, and TAT measurements with the proposed
method. MRI acquisitions covered the entire visceral
cavity from the dome of the liver to the pelvic floor
using the healthy adult MRI protocol described above.
Repeatability was measured from scan–rescan results
performed on the same day, while reproducibility
compared the average results between Day 1 and Day

7. Between scan–rescan acquisitions the subject was
asked to get up from the table and was repositioned
in the coil.

Statistical Analysis

For comparison between manual and automated seg-
mentation methods the absolute volume difference
(VDA) was calculated. VDA was defined as the absolute
difference between automated (A) and manual (M)
volumes, divided by the manual volume (VDA¼jA –
Mj/M). A VDA value of zero would indicate no differ-
ence between measurements. For single-slice analysis
the VDA represents comparisons of one slice at the L4
region for each subject. Alternatively, the VDA for vol-
umetric analysis represents the measured SAT, IAAT,
and TAT volumes from all slices within the visceral
cavity for each subject.

Bland–Altman plots were used to visualize the
agreement between the manual and automated meth-
ods (28). Data which formed a horizontal straight line
at x¼0 would indicate perfect agreement. As well, the
mean difference line would be at x¼0 indicating no
under- or overestimation measurement bias.

Figure 4. Automated abdominal segmentation of a healthy adult female. Volumetric results are shown for the (A) combined
fat and water tissue, (B) subcutaneous adipose, (C) water tissue, and (D) intra-abdominal adipose. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5. Bland–Altman plot showing the difference between single-slice manual and automated segmentation of SAT and
IAAT at the L4 region. Dunnigan-type FPLD2, healthy volunteers (control), NAFLD, and adolescent subjects can be viewed
separately. The dashed lines indicate two standard deviations away from the mean difference line (solid).
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Comparisons of repeatability and reproducibility
were both assessed using the coefficient of variation
(CV) metric. CV is defined as the ratio of the standard
deviation of the absolute volume differences (s), to the
mean volume measured (m) with automated segmenta-
tion between acquisitions: CV¼s/m.

RESULTS

Two subject datasets from the adolescent subjects
were discarded due to excessive motion artifact
caused by difficulty in following breath-hold instruc-
tions. Otherwise, automated segmentation was suc-
cessful with all other subjects. Automated analysis
required processing time of 2 seconds per slice using
the AdipoQuant software on a Mac Pro (2.4 GHz, 8
GB RAM). Manual analysis required 8 minutes per
slice. Each volume (78–88 slices) was completed
within 2 minutes, while manual segmentation
required at least 6 hours.

For single-slice analysis at the level of the L4 verte-
bra, the mean VDA was 6.2 6 6.6 cm3 (4.7 6 4.5%) for
SAT, and 6.7 6 6.8 cm3 (9.0 6 10.2%) for IAAT. The
Pearson correlations were (R2¼0.997), and (R2¼
0.987) for SAT, and IAAT. Bland–Altman plots show
that the two methods had good agreement with no
substantial bias (Fig. 5).

For volumetric analysis, the mean VDA was
39.8 6 28.44 cm3 (1.1 6 0.7%) for SAT, and 93.1 6

80.9 cm3 (5.0 6 3.3%) for IAAT. The Pearson correla-
tions were (R2¼0.999), and (R2¼0.967) for SAT and
IAAT, respectively. Result comparisons for each slice
within the volume are summarized in Fig. 6, indicat-
ing the accuracy for each anatomical location within
the abdominal volume.

Data from the repeatability and reproducibility
acquisitions also showed excellent agreement and
were nearly identical in values. The coefficients of var-
iation for scan–rescan repeatability measurements
were 1.2 6 0.6% for SAT and 2.7 6 2.2% for IAAT. For
reproducibility data acquired on Day 1 and Day 7, the
coefficients of variation were 1.8 6 2.6% for SAT, and
3.0 6 2.1% for IAAT.

Table 3 summarizes our algorithm compared with
recent publications of alternative volumetric analysis
segmentation approaches by Wald et al (29), and
Thormer et al (30).

DISCUSSION

We have demonstrated the ability to automatically
segment regional adipose tissue with a high degree of
accuracy and repeatability. This includes a variety of
subjects (lean, obese, adolescent, and rare fat

Figure 6. Bland–Altman plot showing the difference between manual and automated segmentation of SAT and IAAT for each
slice within the entire 78–88 slice volume of three healthy volunteers. The dashed lines indicate two standard deviations
away from the mean difference line (solid).

Table 3

Volumetric Analysis Literature Comparison

Segmentation process comparison Results comparison

Author Adipose identification

SAT/IAAT

segmentation

Processing

time (s) Mean VDA (%, cm3)

Repeatability

(CV%)

Addeman et al Fat fraction threshold,

PVE correction

Polar conversion,

surface fitting

2 SAT: 0.9%, 39.8 cm3

IAAT: 5.0%, 93.1

cm3

SAT: 1.2%

IAAT: 2.7%

Wald et al (29) Histogram threshold Statistical shape

modeling

0.5 SAT: 0.9%, 48.64 cm3

IAAT: 4.2%, 143.8

cm3

SAT: 0.35%

IAAT: 3.50%

Thormer et al (30) Histogram threshold Snake algorithms 19 SAT: 4.7%*, 663 cm3*

IAAT: 6.3%*, 343

cm3*

N/A

Mean VDA, The mean absolute volume difference between automated and manual segmentation methods; CV, coefficient of variation;

Processing Time, processing timer per slice; *estimated from values on Bland-Altman plot.
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distribution cohorts) as well as imaging strategies and
platforms (IDEAL-IQ using a 3T GE MR750 and
mDixon using a 1.5T Philips Achieva). The results
were very similar to those obtained by standard man-
ual segmentation methods, but required no manual
intervention and could be calculated very rapidly over
complete image volumes.

Data from NAFLD and FPLD2 patients were retro-
spective and not acquired with full abdominal volu-
metric coverage. As a result, single-slice analysis was
used to assess the accuracy of the automated algo-
rithm in varying study cohorts. In addition, due to the
labor-intensive manual segmentation requiring more
than 6 hours per volume, volumetric manual segmen-
tation was not feasible for all patients.

Ultimately, the goal of any segmentation algorithm
is to extract the clinical implications measured
through imaging. The mean measured SAT and IAAT
volumes are compared for each validation cohort
(Table 4), and even with relatively small validation
cohorts there are noticeable differences between the
IAAT to SAT ratios of the cohorts. This is most appa-
rent when comparing the lipodystrophy (FPLD2) and
healthy adult volunteer cohorts. Both have similar
amounts of total adipose tissue, but FPLD2 subjects
store a far larger proportion of fat in the IAAT com-
partment, resulting in a higher clinical risk of experi-
encing metabolic related disorders.

Relative image intensity scale, the inhomogeneous
image intensity of MRI, and large differences in
abdominal size and shape between subjects tradition-
ally make accurate analysis of adipose tissue volume
difficult (1). Techniques where signal intensities vary
more drastically with radial distance from the coil fur-
ther complicates the problem. For example, parallel
MRI uses multicoil arrays for improved image quality
and reduced scan times at the price of significant sig-
nal intensity variation. Automated techniques that
use histogram thresholds to segment adipose based
on signal intensity have been developed (31–33). How-
ever, the prevalence of signal intensity variations in
MRI and parallel MRI make histogram threshold tech-
niques inherently unreliable. This is due to variation
in signal intensities of the same tissue not only
between test facilities, but also between acquisitions
in the same facility.

Prior knowledge approaches that attempt to model
the shape of adipose structures are often used in
automated segmentation as well, limiting the tech-
nique to use with smaller ranges of body types and fat
distributions. Thus, many segmentation techniques

have been developed for use with obese patients,
likely due to the fact that lean subjects are historically
more difficult to automatically segment than subjects
with greater amounts of adipose tissue (34,35). The
method introduced in this study takes an alternative
approach and segments the adipose tissue based on
its position relative to the muscle tissue. As a result,
lean patients can also be automatically segmented
effectively since the most superficial muscle tissue
can be easily delineated by its high water content.
The proposed algorithm was suitable for use with all
body types without the need for calibration between
subjects.

Reproducibility between test centers and acquisition
hardware is important for the mainstream use of any
MRI-based automated adipose segmentation. Proton
density fat fraction (PDFF) images, such as those cre-
ated in IDEAL, are recognized as a biomarker which
can be accurately reproduced regardless of acquisi-
tion hardware setup (21). In contrast, T1-weighted
images are often used for adipose tissue analysis and
are less robust to hardware changes. Additionally, T1
imaging can cause difficulty in segmentation due to
an overlap in signal intensity from the liver and adi-
pose tissue, causing ambiguity in accurate segmenta-
tion (14,36,37). Using IDEAL for fat segmentation is
superior to T1-weighted imaging because of the
unambiguous identification of fat by IDEAL (38).
Importantly, our results demonstrate the ability to
successfully segment fat fraction images collected
from three separate test facilities using varying acqui-
sition methods and hardware.

The time required for automated segmentation
using our method provides a large advantage over
manual segmentation and other semiautomated and
fully automated software packages available. Manual,
semiautomated, and even fully automated segmenta-
tion have been reported to take anywhere from 3–30
minutes per slice by a trained observer (17). With our
automated method, the time required for segmenta-
tion is 1–2 seconds per slice and does not require a
trained observer. This reduction in analysis time
makes it feasible to measure the adipose distribution
of the entire visceral cavity and other large volumes at
high resolutions.

For accurate adipose tissue segmentation, two pos-
sible sources of error must be addressed. First, the
ambiguity of voxels filled with partial volumes of
boundary adipose tissue can result in a significant
source of error if not accounted for (39). Since partial
volume voxels have similar signal intensities or fat
fractions as other nonadipose fat structures such as
bone marrow and ectopic fat, it has traditionally been
difficult to automatically identify. In fat fraction
images, the partial volume voxels can be recognized
by their fat fraction values in combination with their
location; they will always be located adjacent to con-
nected regions of full adipose volume voxels. Second,
additional exclusions of bowel contents, intramuscu-
lar fat, spine and vertebrae, blood vessels, and other
nonrelevant structures are required since they can
have signal intensities that mimic fat (40). Many of
these structures can be excluded using a combination

Table 4

Clinical Implication: Measured Adipose Volumes

Validation cohort TAT (cm3) SAT (cm3) IAAT (cm3)

IAAT/SAT

ratio

Healthy volunteers 164.4 108.8 55.5 0.51

Adolescent 100.3 85.5 14.7 0.17

NAFLD 421.9 239.6 152.3 0.64

FPLD2 161.4 46.2 115.2 2.49

TAT, total adipose tissue (SATþIAAT); SAT, subcutaneous adipose

tissue; IAAT, intra-abdominal adipose tissue.
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of the fat fraction map, fat and water images, and the
R2* map. For instance, ectopic fat found in the liver of
NAFLD patients is often in the 10–25% fat range,
increasing to >50% in rare cases. These areas fall far
below the adipose tissue fat fraction threshold of 70%
fat. As well, they do not fit the criteria of PVE voxels
as they are not directly connected to full volume adi-
pose voxels, with the exception of some organ boun-
daries. This method is also used to remove
intramuscular fat and most bone marrow. An advant-
age of using the IDEAL acquisition method where R2*
maps are available is that trapped gases and solid
structures appear bright in contrast to muscle, organ,
and fatty tissue. With the presence of an accurate R2*
map we have demonstrated the ability to correct for
bowel gas and contents and model the spine and iliac
crests.

Comparing the segmentation process with alternate
methods (Table 3), our method is unique in using the
fat fraction map for adipose tissue identification
rather than a histogram threshold on the fat-only
images. The challenge with using fat-only images for
segmentation, which are measured in relative units, is
that the signal intensity used to identify adipose tis-
sue is inherently changing. Depending on the hard-
ware used to collect the images the intensity of
adipose tissue can change so drastically that any type
of threshold approach will introduce bias in fat mea-
surement related to where the tissue is located within
the volume.

Comparing results between algorithms remains dif-
ficult since the reference standard method of manual
segmentation is calculated slightly different by each
group and has its own issues with precision and
accuracy. The reported precision, repeatability, and
processing time of our proposed method is similar to
that of recently published work by Wald et al, which
are among the most precise current results for volu-
metric analysis. Further reduction in the processing
time of our algorithm could be achieved by implemen-
tation in Cþþ, as is the algorithm of Wald et al. The
advantage of our algorithm is that the identification of
fat is based on analysis of fat fraction values, which
are more stable to changes in hardware, testing site,
and imaging methods. Using fat fraction values also
allows for more accurate correction of partial volume
error, which is especially important in lean subjects
and adolescents. Also, to our knowledge the proposed
method is the first to introduce the use of R2* maps
for automated removal of bone marrow and bowel
contents.

Future work is needed to broaden the application
for use with cardiac/thoracic imaging, full body
scans, and animal models. There is interest in quanti-
fying epicardial adipose tissue for its effect on cardiac
function. However, challenges exist in MRI fat fraction
acquisition due to cardiac motion. Full-body fat distri-
bution analysis is desirable, but due to long scan
times and the inability to cover the entire body in one
acquisition, data collection must be done in portions
and then stitched together later. As acquisition techni-
ques evolve, our automated segmentation method can
be easily adapted to accommodate full-body analysis.

Finally, challenges also exist with small animal imag-
ing due to cardiac motion and small imaging volumes.
Typically, it has been difficult to get sufficient resolu-
tion fat fraction images in mice and rats to delineate
the abdominal muscle wall from the subcutaneous
adipose, but as hardware has improved we are begin-
ning to acquire suitable images. Preliminary work has
been done by our research group and has shown suc-
cess with automated segmentation of mice and rats.

Acquiring high-resolution, artifact-free images
remains a limitation for data collection. Populations
like adolescents, the elderly, and the morbidly obese
may have difficulties following breath-hold instruc-
tions, which creates reliability issues with the image
acquisition. Free-breathing protocols are available
and should be implemented if possible to reduce the
strain on the subject. In addition, fully automated
algorithms are always prone to failure on select data-
sets. The ability for an enduser to correct for errors
which may occur during segmentation, or further seg-
ment the images, can only add to the value and
robustness of any automated analysis tool. These fea-
tures are part of the proposed segmentation software,
but were not used for the purposes of this
publication.

In conclusion, we have demonstrated the ability to
automatically segment regional adipose tissue using
fat fraction maps to accurately quantify TAT, SAT,
and IAAT. The results are very similar to those
obtained by standard manual segmentation methods,
are repeatable, and are calculated very rapidly over
complete imaging volumes.
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