1,053 research outputs found
Molecular Bremsstrahlung Radiation at GHz Frequencies in Air
A detection technique for ultra-high energy cosmic rays, complementary to the
fluorescence technique, would be the use of the molecular Bremsstrahlung
radiation emitted by low-energy ionization electrons left after the passage of
the showers in the atmosphere. In this article, a detailed estimate of the
spectral intensity of photons at ground level originating from this radiation
is presented. The spectral intensity expected from the passage of the
high-energy electrons of the cascade is also estimated. The absorption of the
photons in the plasma of electrons/neutral molecules is shown to be negligible.
The obtained spectral intensity is shown to be W cm
GHz at 10 km from the shower core for a vertical shower induced by a
proton of eV. In addition, a recent measurement of Bremsstrahlung
radiation in air at gigahertz frequencies from a beam of electrons produced at
95 keV by an electron gun is also discussed and reasonably reproduced by the
model.Comment: 20 pages, 9 figures, figures (2,4,7) improved in v2, accepted by
Phys. Rev.
ULTRA : Uv Light Transmission and Reflection in the Atmosphere - Technical report - A supporting experiment for the EUSO project
Radiometer offsets and count conversion coefficients for the Earth Radiation Budget Experiment (ERBE) spacecraft for the years 1984, 1985, and 1986
A compendium is presented of the ground and inflight scanner and nonscanner offsets and count conversion (gain) coefficients used for the Earth Radiation Budget Experiment (ERBE) production processing of data from the ERBS, NOAA-9, and NOAA-10 satellites for the 1 Nov. 1984 to 31 Dec. 1986
Detection of the Cherenkov light diffused by Sea Water with the ULTRA Experiment
The study of Ultra High Energy Cosmic Rays represents one of the most
challenging topic in the Cosmic Rays and in the Astroparticle Physics fields.
The interaction of primary particles with atmospheric nuclei produces a huge
Extensive Air Shower together with isotropic emission of UV fluorescence light
and highly directional Cherenkov photons, that are reflected/diffused
isotropically by the impact on the Earth's surface or on high optical depth
clouds. For space-based observations, detecting the reflected Cherenkov signal
in a delayed coincidence with the fluorescence light improves the accuracy of
the shower reconstruction in space and in particular the measurement of the
shower maximum, giving a strong signature for discriminating hadrons and
neutrinos, and helping to estimate the primary chemical composition. Since the
Earth's surface is mostly covered by water, the ULTRA (UV Light Transmission
and Reflection in the Atmosphere)experiment has been designed to provide the
diffusing properties of sea water, overcoming the lack of information in this
specific field. A small EAS array, made up of 5 particle detectors, and an UV
optical device, have been coupled to detect in coincidence both electromagnetic
and UV components. The detector was in operation from May to December, 2005, in
a small private harbor in Capo Granitola (Italy); the results of these
measurements in terms of diffusion coefficient and threshold energy are
presented here.Comment: 4 pages, 3 figures, PDF format, Proceedings of 30th ICRC,
International Cosmic Ray Conference 2007, Merida, Yucatan, Mexico, 3-11 July
200
p63 isoforms regulate metabolism of cancer stem cells
p63 is an important regulator of epithelial
development expressed in different variants containing (TA)
or lacking (\u394N) the N-terminal transactivation domain. The
different isoforms regulate stem-cell renewal and differentiation
as well as cell senescence. Several studies indicate
that p63 isoforms also play a role in cancer development;
however, very little is known about the role played by p63 in
regulating the cancer stem phenotype. Here we investigate the
cellular signals regulated by TAp63 and \u394Np63 in a model of
epithelial cancer stem cells. To this end, we used colon cancer
stem cells, overexpressing either TAp63 or \u394Np63 isoforms,
to carry out a proteomic study by chemical-labeling approach
coupled to network analysis. Our results indicate that p63 is
implicated in a wide range of biological processes, including metabolism. This was further investigated by a targeted strategy at
both protein and metabolite levels. The overall data show that TAp63 overexpressing cells are more glycolytic-active than \u394Np63
cells, indicating that the two isoforms may regulate the key steps of glycolysis in an opposite manner. The mass-spectrometry
proteomics data of the study have been deposited to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository with data set identifiers PXD000769 and PXD000768
TEMPERATURE AND LEVEL DENSITY PARAMETER OF EVAPORATION RESIDUES PRODUCED IN THE REACTION 165Ho + 600 MeV 20Ne
Evaporative and preequilibrium neutrons emitted from evaporation residues in the reaction Ho + 600 MeV neon are exploited to deduce the thermal excitation energy E* and temperature T of the residues. From these quantities the level density parameter is deduced at a temperature of 4.1 MeV
Experimental study of a liquid Xenon PET prototype module
A detector using liquid Xenon in the scintillation mode is studied for
Positron Emission Tomography (PET). The specific design aims at taking full
advantage of the liquid Xenon properties. It does feature a promising
insensitive to any parallax effect. This work reports on the performances of
the first LXe prototype module, equipped with a position sensitive PMT
operating in the VUV range (178 nm).Comment: Proc. of the 7th International Workshops on Radiation Imaging
Detectors (IWORID-7), Grenoble, France 4-7 July 200
Distinctive features of tumor-infiltrating gd T lymphocytes in human colorectal cancer
gd T cells usually infiltrate many different types of cancer, but it is unclear whether they inhibit or promote tumor progression. Moreover, properties of tumor-infiltrating gd T cells and those in the corresponding normal tissue remain largely unknown. Here we have studied features of gd T cells in colorectal cancer, normal colon tissue and peripheral blood, and correlated their levels with clinicopathologic hallmarks. Flow cytometry and transcriptome analyses showed that the tumor comprised a highly variable rate of TILs (5-90%) and 4%gd T cells on average, with the majority expressing Vd1. Most Vd1 and Vd2 T cells showed a predominant effector memory phenotype and had reduced production of IFN-g which was likely due to yet unidentified inhibitory molecules present in cancer stem cell secretome. Transcriptome analyses revealed that patients containing abundant gd T cells had significantly longer 5-year disease free survival rate, suggesting their efficacy in controlling tumor at very early stage
Dual targeting of HER3 and MEK may overcome HER3-dependent drug-resistance of colon cancers
Although the medical treatment of colorectal cancer has evolved greatly in the last years, a significant portion of early-stage patients develops recurrence after therapies. The current clinical trials are directed to evaluate new drug combinations and treatment schedules. By the use of patient-derived or established colon cancer cell lines, we found that the tyrosine kinase receptor HER3 is involved in the mechanisms of resistance to therapies. In agreement, the immunohistochemical analysis of total and phospho-HER3 expression in 185 colorectal cancer specimens revealed a significant correlation with lower disease-free survival. Targeting HER3 by the use of the monoclonal antibody patritumab we found induction of growth arrest in all cell lines. Despite the high efficiency of patritumab in abrogating the HER3-dependent activation of PI3K pathway, the HER2 and EGFR-dependent MAPK pathway is activated as a compensatory mechanism. Interestingly, we found that the MEK-inhibitor trametinib inhibits, as expected, the MAPK pathway but induces the HER3-dependent activation of PI3K pathway. The combined treatment results in the abrogation of both PI3K and MAPK pathways and in a significant reduction of cell proliferation and survival. These data suggest a new strategy of therapy for HER3-overexpressing colon cancers
Isolation and Characterization of Precise Dye/Dendrimer Ratios
Fluorescent dyes are commonly conjugated to nanomaterials for imaging applications using stochastic synthesis conditions that result in a Poisson distribution of dye/particle ratios and therefore a broad range of photophysical and biodistribution properties. We report the isolation and characterization of generation 5 poly(amidoamine) (G5 PAMAM) dendrimer samples containing 1, 2, 3, and 4 fluorescein (FC) or 6‐carboxytetramethylrhodamine succinimidyl ester (TAMRA) dyes per polymer particle. For the fluorescein case, this was achieved by stochastically functionalizing dendrimer with a cyclooctyne “click” ligand, separation into sample containing precisely defined “click” ligand/particle ratios using reverse‐phase high performance liquid chromatography (RP‐HPLC), followed by reaction with excess azide‐functionalized fluorescein dye. For the TAMRA samples, stochastically functionalized dendrimer was directly separated into precise dye/particle ratios using RP‐HPLC. These materials were characterized using 1 H and 19 F NMR spectroscopy, RP‐HPLC, UV/Vis and fluorescence spectroscopy, lifetime measurements, and MALDI. High definition : Two approaches for the formation of generation 5 PAMAM samples containing precise dye/dendrimer ratios are presented. The first approach, using direct separation based on dye hydrophobicity, generated a set of TAMRA‐containing dendrimers, and the second, using click chemistry, generated a set of fluorescein‐containing dendrimer (see figure).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106970/1/chem_201304854_sm_miscellaneous_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106970/2/4638_ftp.pd
- …
