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ABSTRACT
gd T cells usually infiltrate many different types of cancer, but it is unclear whether they inhibit or promote
tumor progression. Moreover, properties of tumor-infiltrating gd T cells and those in the corresponding
normal tissue remain largely unknown. Here we have studied features of gd T cells in colorectal cancer,
normal colon tissue and peripheral blood, and correlated their levels with clinicopathologic hallmarks.
Flow cytometry and transcriptome analyses showed that the tumor comprised a highly variable rate of
TILs (5–90%) and 4% gd T cells on average, with the majority expressing Vd1. Most Vd1 and Vd2 T cells
showed a predominant effector memory phenotype and had reduced production of IFN- g which was
likely due to yet unidentified inhibitory molecules present in cancer stem cell secretome. Transcriptome
analyses revealed that patients containing abundant gd T cells had significantly longer 5-year disease free
survival rate, suggesting their efficacy in controlling tumor at very early stage.

KEYWORDS
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Introduction

Colorectal cancer (CRC) is one of the top 3 causes of cancer
death.1-4 CRC arises from the inner wall of the large intestine
and results from the accumulation of diverse genomic aberra-
tions. These include both inherited mutations causing heredi-
tary CRC5 and several chromosomal locations and single
nucleotide polymorphisms (SNPs) which confer increased risk
for CRC development. Moreover, tumor cells grow in a very
complex microenvironment and establish reciprocal interac-
tions with epithelial and mesenchymal cells, vascular and lym-
phatic vessels, inflammatory and immune cells.6-8

Tumor-infiltrating lymphocytes (TILs) are an immune pop-
ulation composed of different immune cells that have specific-
ity and potential reactivity against the tumor. TILs have been
found in a wide variety of solid tumors including CRC.9-10

However, while the functions and anti-CRC activities of CD4
and CD8 T cells within TILs have been extensively studied,11-12

very little is known about gd T lymphocytes.
gd T lymphocytes are important effector cells of the immune

system that may play a role in the anti-tumor immunosurveil-
lance. Human gd T cells can be divided into 2 main populations
based upon d chain expression13: gd T cells expressing the Vd1
chain are mostly found in mucosal tissues, while gd T cells
expressing the Vd2 chain (preferentially paired to the Vg9
chain) predominate in the peripheral blood and secondary lym-
phoid organs.14 While the ligand(s) recognized by Vd1 cells

remain unknown, Vd2 T cells recognize non peptidic Ags by a
MHC-unrestricted mechanism,15-17 but which involves butyro-
philin (BTN) 3A1.18-20 Specifically, Vg9Vd2 T cells recognize
small unprocessed non peptidic compounds containing phos-
phate and termed phosphoantigens (PAgs), that are produced
through the isoprenoid biosynthesis pathway.15-17 Moreover,
these cells can also be activated, through an indirect
mechanism, by aminobisphosphonates that inhibit farnesyl
pyrophosphate synthase and cause accumulation of down-
stream endogenous PAgs.21-22 Physiologic levels of PAgs, how-
ever, are not stimulatory of Vg9Vd2 T cells, but transformed
and infected cells would produce increased metabolic inter-
mediates such as PAgs. Upon activation, gd T lymphocytes
undergo a differentiation program resembling that of CD8 T
cells and they give rise to both central memory
(TCM; CD45RA¡ CD27C) and effector memory (TEM;
CD45RA¡ CD27¡) and terminally differentiated (TEMRA;
CD45RAC CD27¡) T cells. gd TCM cells home to secondary
lymphoid organs and lack immediate effector functions, while
gd TEM and TEMRA cells home to sites of inflammation where
they display immediate effector functions such as cytokine pro-
duction and cytotoxicity, respectively.23 Based on their effector
properties, Vg9Vd2 T lymphocytes are supposed to play an
important role in cellular immune responses against tumors.

gd T cells have been found among TILs in many different
types of cancer, but it is unclear if they correlate positively or
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not with tumor growth, or even fail to correlate with any prog-
nostic feature.24-25 With particular regard to CRC, gd T cells
among TILs are the major source of IL-17 and positively corre-
late with advanced tumor clinicopathologic features.26 How-
ever, a very recent analysis of expression signature from
»18.000 human tumors with overall survival outcomes across
a collection of 39 cancer types, including CRC, revealed intratu-
moral gd cells as the most significant favorable prognostic
immune population.27 Therefore, there is urgent need to revisit
and clarify this issue and also to understand the reciprocal
interactions between gd cells and other components of the
tumor microenvironment, because these interactions can influ-
ence the function of intratumoral gd cells and thus the net out-
come of their response to tumor.

In this paper, we have studied the frequency, phenotype and
functions of gd T cells infiltrating CRC and correlated levels of
intratumoral gd T cells with clinical outcome. Moreover, we
have studied the influence of the tumor microenvironment on
the functional responses of gd T cells.

Results

gd T cells are present among CRC TILs

To evaluate the composition of tumor-infiltrating leukocytes in
human CRC, CRC tissues were freshly obtained from 70
patients undergoing surgery, and analysis of cell surface

molecules defining T, B, NK cells and gd T cells was performed
using polychromatic flow cytometry. Cumulative data are
shown in Fig. 1a. Immune infiltrates detected with the pan-leu-
kocyte marker CD45 were present in both normal and tumor
tissues, but were substantially increased in CRC compared with
normal tissue (CRC: median D 68%, range 15–87.8%; Healthy
tissue: median D 61%, range 33.9–85%).Lymphocyte subsets
were evaluated by the use of cell-surface markers and indicated
as percentage of the total number of CD45C cells in each sam-
ple (Fig. 1a). CD3C T cells represented an average of 20% of the
whole leukocyte (CD45C) population within the analyzed pri-
mary CRC samples, and consisted mainly of CD4C and CD8C

T cells, each of which accounted for 8% of the CD45C popula-
tion (hence each accounting for 40% of the CD3C population).
Percentages of B and NK lymphocytes were lower than percen-
tages of CD3C cells (6% for CD3¡ CD19C cells and 10% for
CD3¡ CD56C cells). gd T cells were present among intratu-
moral leukocytes and accounted for approximately 4.5% (mean
4.5% § 4.9%) of the total leukocyte population (Fig. 1a), hence
accounting for approximately 20% of the CD3C population.
For comparison, we data mined an independent cohort of 585
CRC transcriptomes28 acquired on Affymetrix U133plus2
microarrays and downloaded from the NCBI-GEO data set
repository.29 The algorithmic deconvolution of leucocytes infil-
trating these tumors by CIBERSORT–LM730-31 detected on
average 4.9% § 4.4% gd TILs among the total leucocyte popu-
lation in these samples. Hence the above FACS results were

Figure 1. Frequency of infiltrating and circulating gd T cells expressing either Vd1 or Vd2 TCR d chains in HD and CRC patients. (A) Cumulative analysis of immune infil-
trates of 70 colon cancer specimens. Lymphomonocyte populations were evaluated by the use of cell-surface markers and indicated as percentage of the total number of
CD45C cells in each sample. (B) Box plot of percentages of Vd1 or Vd2 gd T cells subsets in healthy tissue, tumor tissue and peripheral blood of CRC patients and periph-
eral blood of HD subjects. Boxes represent 25th to 75th percentiles; middle bar identifies median; whiskers show minimum and maximum. �p<0.05 performed by non-
parametric Mann-Whitney test, unpaired and 2-tailed with confidential interval 95%. (C) Representative dot plots of the gating strategy used to define Vd1 and Vd2 T
cells from healthy and tumor tissues. The following gating strategy was used to detect gd T lymphocytes: FSC/SSC, single cells, live cells CD45/CD3, Vd1 and Vd2 T cells.
(D) Sections from CRC patients were stained with anti-human pan-gd TCR (red) and anti-CD3 (green) for immunofluorescent (IF) staining. Right panel is a magnified view
and the arrows display the colocalization of gd TCR and CD3. Nuclei were contrasted with DAPI. One of 3 independent experiments is shown. (E) Phenotypical analysis of
Vd1 and Vd2 T cells among healthy and tumor tissues and PBMC of CRC patients, upon staining with mAbs to CD45RA and CD27, and gating on CD3C Vd1C or CD3C

Vd2C T cells. Beside, flow cytometry panels of a representative dot plot. Isotype-matched mAbs were used as controls. Viable lymphocytes were gated by forward and
side scatter, and analysis was performed on 100,000 acquired events by using FlowJo. PBMC were stained with anti-CD3, anti-Vd2, anti-CD45RA and CD27 mAbs.
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fully consistent with those from an independent cohort of CRC
(Wilcoxon p value D 0.26 for comparison of the 2 series of gd
TIL rates). As shown in Fig. 1a, there was an extremely high
variability in percentages of lymphocyte subsets detected
among TILs in the tested CRC patients. This was strikingly
depicted by both the raw FACS data and the microarray decon-
volution for percentages of CD3C T cells which ranged between
5% to 90% (FACS) and 4% to 70% (microarrays).

gd T cells variably infiltrate several human cancers, but the
current data on the prognostic value of intratumoral gd T cells
have shown marked variability.27 To study whether this was
dependent on the prevalence of a given gd subset among TILs,
we evaluated Vd1 and Vd2 T cells from CRC and adjacent non
tumor colon tissue to determine their frequencies and composi-
tion. Fig. 1b shows cumulative data from 70 CRC patients,
while Fig. 1c shows primary data from one representative sam-
ple per each group. As compared with adjacent non tumor
colon tissue, intratumoral gd T cells did not exhibit a distinct

prevalence and distribution of Vd1 and Vd2 T cell subsets,
despite a slightly and not significantly increased abundance of
both subsets (Fig. 1b). As expected, the majority of gd T cells in
both CRC and adjacent normal tissues expressed Vd1, and this
pattern was observed in multiple patients despite the frequen-
cies of Vd1 and Vd2 T cells among tumor-infiltrating leuko-
cytes varied widely. This TCR bias could not be investigated
likewise using the microarray data set which lacks TRDV1
gene, and in which the correlated levels of TRGV9 and TRDV2
genes indicated presence of TCR Vg9Vd2 T lymphocytes (data
not shown).

Because previous papers11-12 have emphasized the impor-
tance of immune cell localization, within distinct tumor
regions, related to the risk of tumor recurrence, we also visual-
ized intratumoral gd T cells by immunofluorescence analysis
on frozen sections. In our analysis, gd T cells were consistently
detected in the tumor border/stroma, but only very rarely in
the intratumor tissue (Fig. 1d).

Figure 2. Cytokine production of tumor infiltrating gd T cells. (A) Box plots of cumulative data of healthy tissue and tumor tissue samples from 20 CRC patients. Cells were
stimulated in vitro as described in Materials and Methods and were stained with mAbs to IFN-g , IL-17 and TNF-a. �p<0.05 and ��p<0.01 performed by nonparametric
Mann-Whitney test, unpaired and 2-tailed with confidential interval 95%. (B) Flow cytometry analysis of healthy and tumor tissue from one representative CRC patient. (C)
Representative dot plots to define IL-17 or IFN-g producing gd, Vd1 and Vd2 T cells gated separately on CD45C CD3Cgd¡, CD45C CD3C Vd1C or CD45C CD3C Vd2C T cells.
(D) Representative dot plots to define cells making IL-17 or IFN-g upon gating on CD45C IL-17C or CD45C IFN-gC cells, of healthy and tumor tissue. (E) Pearson correlation
of TCR, IFNG and IL17A gene expression levels in n D 585 CRC tumor samples.��p<0.01. (F) CRC-infiltrating CD45C single cells were used to generate the SPADE tree, and
were grouped in 2 different populations, CD3¡ and CD3C(black outer circles). The distribution of themajor populations is showed for one representative sample. The branch-
ing tree is based on the number of cells included in each node and the legend indicates the range of cell per node according to relative median fluorescence intensity.
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Most Vd1 T cells in tumor tissues were of effector memory
phenotype (TEM), whereas TEMRA, TNaive and TCM cells
accounted for 15%, 3% and 3.5% of the total gd population,
respectively (Fig. 1e). Conversely, intratumoral Vd2 T cells had
a more heterogeneous phenotype with TEM and TEMRA cells
almost equally well represented (33% and 42% respectively)
and TCM and TNaive phenotypes accounting for only 3% and
2% of the total gd population, respectively.

To understand if the predominance of gd T cells with effec-
tor phenotypes in TILs was due to the tumor microenviron-
ment or simply reflected an overall bias in colon cancer
patients, we compared the phenotype distribution of Vd1 and
Vd2 T cells in the tumor tissue with that in adjacent non tumor
colon tissue and in peripheral blood. The cell-surface differenti-
ation patterns of CRC-resident Vd1 and Vd2 T cells were very
similar to those of Vd1 and Vd2 T cells residing in adjacent non
tumor colon tissue, but distinct from those of the correspond-
ing cells from the peripheral blood (Fig. 1e). This indicates that
residence in a non-lymphoid tissue, regardless of whether it is
normal or has undergone tumor transformation, serves as a
major determinant of the phenotypic characteristics of tumor
and tissue gd T cells.

Functional features of CRC-infiltrating gd T cells

To further elucidate the functional state of infiltrating gd T
cells, we analyzed the production of IL-17, IFN-g and TNF-a
by tumor-infiltrating Vd1 and Vd2 T cells, upon in vitro stimu-
lation with ionomycin and PMA. Fig. 2a shows cumulative
data from 20 CRC patients and Fig. 2b shows primary data
from one representative sample per each group.

Upon activation, Vd1 T cells from adjacent non tumor colon
tissue produced IFN-g, but very poor, if any, IL-17 and TNF-a.
In contrast, Vd1 T cells from CRC tissues produced signifi-
cantly less IFN-g compared with adjacent non tumor colon tis-
sue (8.1% versus 1.2%), but expressed more IL-17 (2.7% vs.
0.2%) and TNF-a (3% vs. 1.9%). Similarly, upon activation Vd2
T cells from adjacent non tumor colon tissue expressed both
IFN-g and TNF-a, but very low levels IL-17, while Vd2 T cells
from CRC tissues expressed significantly less IFN-g (23.5% vs.
41.2%) and had similar TNF-a (16.9% vs. 14.6%) and IL-17
expression (1% vs. 0.4%). These results were confirmed by the
measurement of IFN-g, IL-17 and TNF-a concentrations in
culture supernatants of Vd1 and Vd2 T cells by ELISA (data
not shown). Moreover, the very poor IL-17 production by CRC
infiltrating gd T cells was confirmed when we differently gated
through more stringent leukocyte gates (CD45C CD3Cgd¡,
CD45C CD3C Vd1C or CD45C CD3C Vd2C T cells): in fact, 5%
Vd1C and 0.87% Vd2C cells expressed IL-17, and 10% Vd1C

and 27.6% Vd2C cells expressed IFN-g (Fig. 2c).
The above finding was unexpected, because a previous

study has shown that gd T cells are the major cellular
source of IL-17 in human CRC.26 Given that, and to
exclude a general failure of IL-17 production in our experi-
mental settings, we used another different strategy: we gated
first on IL-17-producing leukocytes (CD45C IL-17C) and
then checked the phenotype of cells making IL-17 among
tumor-infiltrating leukocytes. As shown in Fig. 2d the
majority of CD45C IL-17C cells both in CRC and in

adjacent non tumor colon tissues were CD3C but did not
express either Vd1 or Vd2, suggesting they may be typical
Th17 or Tc17 ab T cells. Moreover, a discrete fraction of
CD45C IL-17C cells (ranging from 10% to 50% in different
samples), which was increased in CRC tissues as compared
with adjacent non tumor colon tissue, did not express CD3
and probably corresponds to type 3 innate lymphoid cells
(ILC3) or other leukocyte populations. Using this same gat-
ing strategy, we also show that most of cells expressing
IFN-g and TNF-a were CD3C but Vd1¡ and Vd2¡ T cells,
both in CRC and adjacent non tumor colon tissues.

In the CRC microarray data set as well, expression of
TRGV9, TRDV2 or CD3D genes was correlated with expression
of IFNG gene, suggesting that TILs in general and TCRVg9Vd2
cells in particular are involved in producing this cytokine in
CRC samples. By contrast such correlations were not found
with expression of IL17A gene, suggesting that IL-17 produc-
tion arises from more diverse cell sources than IFNG (Fig. 2e).
This possibility was also supported by SPADE (Spanning-Tree
Progression Analysis of Density-normalized Events) algorithm,
which distinguishes cell subsets by clustering, based on surface
antigen expression denoted by a color gradient: as shown in
Fig. 2f, IFN-g had diverse maps compared with those of IL-17.

Together, these results indicate that Vd1 and Vd2 T cells in
CRC and adjacent normal tissues preferentially produce IFN-g,
but very low IL-17, almost as all the other CD3C TILs in human
CRC. Moreover, IFN-g production by both Vd1 and Vd2 T
cells is significantly reduced in CRC tissues, as compared with
adjacent normal colon tissue samples.

CRC-infiltrating gd T cells are largely shaped
by the local tumor microenvironment

Next we sought to explore whether the tumor microenviron-
ment imparts distinct functional features on gd T cells. In par-
ticular, it is conceivable that tissue resident gd T cells are
functionally affected locally or it is also possible that gd T cells
are recruited into the tumor from draining lymph nodes or
peripheral blood and then undergo functional changes in
response to the local microenvironment.

To test the influence of the tumor environment on gd T
cells, we initially isolated cancer stem cells (CSC) and cancer-
associated fibroblasts (CAF) from 15 CRC patients and tested
the effect of the 48-hrs culture supernatants from CSC
and CAF on polyclonal gd T cell lines (containing both Vd1
and Vd2 T cells) obtained from peripheral blood of healthy
donors. As shown in Fig. 3a, supernatants from CSC, but not
supernatants from CAF significantly impaired proliferation of
polyclonal gd T cells to PHA. Supernatants from CSC also
inhibited proliferation of polyclonal gd T cells stimulated with
anti-CD3 and anti-CD28, or proliferation of Vd2 T cells from
peripheral blood stimulated with zoledronate C IL-2 in a 7-day
culture setting. (data not shown).

Supernatants from CSC were also capable to significantly
inhibit IFN-g production by polyclonal gd T cell lines and pro-
moted production of IL-17, while supernatants from CAF only
minimally inhibited IFN-g production and did not induce IL-
17 production by gd T cell lines (Fig. 3b). Overall, these results
indicate that cells in the tumor microenvironment, and
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particularly CSC, produce immunomodulatory molecules capa-
ble to inhibit proliferation and IFN-g production by gd T cells
and to promote their IL-17 production.

To test whether the effect of CSC supernatants was restricted
to gd T cells or was rather a more general phenomenon, we
generated polyclonal CD4 and CD8 ab T cell lines and tested
the capability of 48-hrs CSC supernatants to inhibit IFN-g pro-
duction. As shown in Fig. 3c, supernatants from CSC signifi-
cantly inhibited IFN-g production by both CD4 and CD8 T

cells lines, thus indicating that inhibitory molecules produced
by CSC have a profound effect on several components of both
adaptive (ab) and innate-like (gd)T cell immune response.

The above reported data clearly demonstrate the presence of
biologically important immunomodulatory molecules in CSC
secretome. Therefore, we performed a comparative analysis of
levels of 50 different cytokines in supernatants of CSC and
CAF by the Luminex platform. As shown in Fig. 4a, CSC pro-
duced remarkably elevated levels of several cytokines, while

Figure 3. CSC supernatants inhibit proliferation and IFN-gproduction by gd, CD4 and CD8 T cells. (A) Cumulative data (n D 5) from proliferation assay. Positive control
(CTRLC) and negative control (CTRL-) refer to cells stimulated with PHA and unstimulated cells, respectively. Data are mean percentage of positive cells § SD. Shown
also histogram plots of proliferation of gd T cells upon culture with PHA and in the presence of CAF and CSC supernatants. (B) Frequency of IL-17- or IFN-g-producing gd
T cells upon incubation for 24 or 48 hrs with PHA in the presence of CAF or CSC supernatant. Histograms show cumulative data from 5 different experiments. Error bars
indicate SD. Shown are also representative dot plots.(C) Cumulative and flow cytometry analysis of IFN-g and IL-17 production by CD4 and CD8 T cells upon incubation
for 48 hrs with PHA in the presence of CAF or CSC supernatant.�p<0.05.
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CAF had a more limited cytokine producing capabilities, with
the exception of TGF-b which was preferentially produced by
CAF. We then checked at cytokines which were differentially
expressed in the inhibitory CSC secretome, but not in the non
inhibitory CAF secretome. As shown in Fig. 4b, although
there were several molecules unique to each CSC or CAF secre-
tome, there were only 8 common molecules to every CSC secre-
tome (FGF, GM-CSF, VEGF, Groa, IL-3, IL-8, IL-12 and
IL-12p40), and 9 common molecules to every CAF secretome
(FGF, GM-CSF, Groa, TGF-b, SDF1, HGF, OPN, IL-3 and IL-
12p40). When analysis was restricted to cytokines differentially
expressed by the CSC and CAF secretomes, there were only 3
cytokines uniquely expressed by the inhibitory CSC secretome,
but absent (or produced at very low levels) in the non inhibi-
tory CAF secretome, namely IL-8, IL-12 and VEGF. Among
these 3 top overexpressed cytokines, IL-12 does not inhibit T
cell proliferation and IFN-g production but instead induces dif-
ferentiation to IFN-g production. Therefore, IL-8 and VEGF
remain as potential candidates of the immunosuppressive activ-
ities of the CSC secretome.

Intratumoral gd T cells correlate with CRC outcome

Previous studies on the prognostic value of tumor-infiltrat-
ing gd T cells have shown marked variability, with positive,
negative, or even no correlation.22-23 This is strikingly

depicted by results obtained in CRC in which gd T cells
making IL-17 positively correlated with advanced tumor
clinicopathologic features in one study,24 but emerged as
the most significant favorable prognostic population in
another study.25

We initially investigated whether intratumoral gd T cells had
clinical relevance, by data mining transcriptomes and clinical
files from the larger cohort of n D 585 CRC samples mentioned
above. The leucocyte deconvolution of this data set evidenced a
link between molecular markers of CRC and their abundance
of TILs, whether of the gd or ab TCR subtype. The KRAS
mutation status made no difference for these criteria. By con-
trast, the abundance of both subsets of TILs was significantly
higher in mismatch repair-deficient (MMR-D) than -proficient
(MMR-P) tumors, in BRAFmutated vs. BRAFwt, and in TP53wt

vs. TP53mutated tumors. A higher content of TILs was also
apparent in tumors positive for the CPG island methylator phe-
notype (CIMP) vs. their negative counterparts and in tumors
negative for the chromosomal instability phenotype (CIN) vs.
their positive counterparts. Importantly, each of these prognos-
tic factors influenced in the same direction the abundance of gd
TILs and of ab TILs (Fig. 5).

We then correlated frequencies of total gd T cells with clini-
cal outcome by analyzing the independent data set mentioned
previously for n D 557 CRC patients for whom follow-up was
available. Across the whole cohort, those patients with more

Figure 4. Comparative analysis of 50 different cytokines in CSC and CAF secretome (A) Levels of 50 different cytokines in 48 hrs supernatants of CSC and CAF by the Lumi-
nex platform. (B) Cytokine grouping in 6 CRC and 5 CAF samples as represented by Venn diagrams.
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abundant gd TILs had a better DFS, as confirmed by stratifying
patients according to expression of the TCRGV9-encoding
gene. Patients with higher expression of IFNG also presented a
higher DFS, whereas those with higher expression of IL17A
had significantly reduced DFS. This gd TIL and IFNG-depen-
dent favorable pattern was conserved when reducing the whole
cohort to those patients without lymph node invasion. By con-
trast, the IL17-dependent unfavorable pattern was rather
observed in patients with invaded lymph nodes (Fig. 6a).
Hence, stratifying the entire cohort according to both gd TIL
abundance and IFNG expression produced groups with strik-
ingly different DFS, and demonstrated most notably that gd
TIL abundance overweighted IFNG expression in contributing
to this outcome. The same conclusions hold true for gd TIL
abundance with regard to IL17A expression (Fig. 6b).

Discussion

Accumulating evidences that high densities of mature T cells,
particularly with a Th1 and cytotoxic orientation, in different
locations of a primary tumor, correlate with favorable prog-
nosis both in terms of disease-free and overall survival,
strongly support the fact that a natural immune reaction
controls tumor cell growth and smoothens cancer aggres-
siveness.10-11,32 The presence of tumor infiltrating lympho-
cytes in CRC is associated with a favorable prognosis but is
not sufficient to overcome inhibitory changes within the
tumor microenvironment over a prolonged period of time.
Migration of lymphocytes from the circulation to the tumor
site implies that the host immune system is capable of initi-
ating an anti-tumor response. Unfortunately, changes that
occur as a result of mutations within tumor cells eventually
create an immunosuppressive tumor microenvironment that
prevents tumor eradication by TILs.33-34

Tumor immunoevasion mechanisms are common and
include the downregulation of tumor associated antigens, of
MHC, and of costimulatory molecules. By contrast to ab T

cells, gd T cells are not MHC restricted and show less depen-
dence on costimulators such as CD28. Moreover, gd T cells in
humans display potent MHC unrestricted cytotoxic activity in
vitro against various tumors and for example they are fully
capable to kill colon cancer stem cells that had been sensitized
in vitro by zoledronate or low dose chemotherapy.35-37

In this paper, we have studied CRC-infiltrating gd T cells
and correlated their levels with clinical outcome. Moreover, we
have studied the influence of the tumor microenvironment on
the functional responses of gd T cells.

Results herewith reported show that gd T cells are present
among intratumoral leukocytes but they are a minor T cell pop-
ulation accounting for approximately 20% of total CD3C cells.
Immunofluorescence analysis additional revealed that gd T
cells were mainly detected in the tumor border/stroma, but
very rarely in the intratumor tissue.

T cells expressing Vd1 were the dominant gd subset in CRC
tissue and also in adjacent normal tissues, but Vd1 and Vd2 T
cell subsets were not significantly increased in tumor tissue.
Phenotypic analysis showed that most of CRC-infiltrating Vd1
and Vd2 T cells had TEM and TEMRA phenotypes, similar to the
phenotype of Vd1 and Vd2 T cells residing in adjacent normal
colon tissue, but distinct from that of the corresponding cells
from the peripheral blood, suggesting that residence in a non-
lymphoid peripheral tissue, regardless of whether it is normal
or has undergone tumor transformation, may be a major deter-
minant of the phenotypic characteristics of tumor and tissue gd
T cells.

Functional analysis of tumor-infiltrating gd T cells demon-
strate that both Vd1 and Vd2 T cells in CRC and adjacent nor-
mal tissues preferentially produce IFN-g, but very low IL-17.
Moreover, IFN-g production by both Vd1 and Vd2 T cells is
significantly reduced in CRC tissues, as compared with adjacent
normal colon tissue samples. These finding are surprising in
light of a previous study showing that gd T cells are the major
cellular source of IL-17 in human CRC.26 Using 3 different
FACS gating strategies we were able to confirm the majority of

Figure 5. Data mining transcriptomes and abundance of TILs. Deconvolution of gd TIL and ab TIL abundances in CRC tumors according to their molecular and clinical
hallmarks. Red bar indicate group means. Student’s p values (2-sided) are indicated.
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IL-17-producing leukocytes both in CRC and in adjacent nor-
mal tissues were in fact CD3C but not Vd1 or Vd2, suggesting
they are Th17 or Tc17 ab T cells, and a sizeable fraction of IL-
17 was expressed by CD3¡ cells, probably corresponding to
ILC3. We also demonstrated that CD3C but Vd1¡ and Vd2¡ T
cells were the major source of TNF-a and IFN-g in both CRC
and adjacent normal tissues.

Current data on the prognostic value of CRC-infiltrating gd

T cells show marked variability: while one initial study found
that gd17 T cells (expressing either Vd1 or Vd2) positively cor-
relate with advanced tumor clinicopathologic features,26 2 most
recent studies27,31 of expression signature from CRC with over-
all survival outcomes, revealed intratumoral gd cells,27 and
particularly the Vg9Vd2 subset,31 as the most significant favor-
able prognostic immune population. Results of data mining
transcriptomes and clinical files from a large cohort of CRC
samples revealed that 5-year DFS probability was significantly
higher in CRC patients with high number of tumor infiltrating
gd T cells and IFN-g positive cells.

Thus, it is the maintenance of IFN-g production, that
positively associates with better patient outcome, and it is
largely influenced by the tumor microenvironment. Accord-
ingly, supernatants from colon CSCs significantly inhibited
proliferation and IFN-g production by gd T cells and pro-
moted production of IL-17. Supernatants from other compo-
nents of the tumor tissue microenvironment such as CAF
had limited suppressive ability and did not promote produc-
tion of IL-17. We also found that colon CSC supernatants
significantly inhibited IFN-g production by both CD4 and
CD8 T cells, clearly indicating that inhibitory molecules pro-
duced by colon CSC have a profound effect on several com-
ponents of both adaptive (ab) and innate-like (gd) T cell
immune response. We do not have clear evidence on which
molecule(s) is made by colon CSC which is responsible for
their immunosuppressive activities: there were only 3 cyto-
kines differentially expressed by the inhibitory CSC secre-
tome, but absent in the non inhibitory CAF secretome,
namely IL-8, IL-12 and VEGF. IL-12 does not have

Figure 6. Correlation between gene expression and DFS. (A) DFS of CRC patients according to abundance of gd TILs as well as of TCRGV9, IFNG and IL17A gene expression
levels. (B) DFS of CRC patients according to gd TILs abundance and IFNG or IL17A gene expression.

e1347742-8 S. MERAVIGLIA ET AL.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

i P
al

er
m

o]
 a

t 2
2:

08
 2

0 
A

ug
us

t 2
01

7 



inhibitory activity on T cell proliferation and IFN-g produc-
tion, which leaves IL-8 and VEGF as potential candidates of
the immunosuppressive activities of the colon CSC secre-
tome. While both these 2 molecules have the capability to
suppress T cell responses, this is not due to a direct on T
cells but is rather mediated by other cell types like dendritic
cells, myeloid-derived suppressor cells, M2 macrophages and
Treg cells.38-39 Additionally, it is also possible that immuno-
suppressive elements like prostaglandins,40 kynurenins41 or
potassium42 may be responsible. Therefore, additional stud-
ies are needed to find out the molecule responsible for the
immunosuppressive activities of the colon CSC secretome on
ab and gd T cells.

In conclusion, our results clearly show that gd T cells are a
minor population among colon cancer-infiltrating leukocytes,
have an effector phenotype but reduced capacity to produce
IFN-g, when compared with gd T cells from adjacent normal
colon tissue and peripheral blood, but do not produce IL-17.
Moreover, they are correlated with clinical outcome indicating
they are probably involved in controlling tumor growth at a
early stage of disease.

Materials and methods

Characteristics of sample cohort

Colon cancer tissues and adjacent normal colon tissues were
obtained from the Department of Surgery at the University
Hospital of Palermo. We enrolled 70 patients (52 males, 18
females, median age 62 years, age range 42–82 years) undergo-
ing a colon resection for colon adenocarcinoma and diagnosis
of CRC was histologically confirmed.

A blood drawing was taken before the surgical excision. The
study received authorisation by the local ethical committee and
was performed in accordance to the principles of the Helsinki
declaration. All individuals gave written informed consent to
participate.

Isolation of tumor-infiltrating and circulating immune
cells and flow cytometry analysis

Colon cancer specimens and adjacent normal colon tissues
were freshly obtained at the time of primary surgery and
transported to the laboratory for processing. Tissue was
minced into small pieces followed digestion with Collagenase
type IV and DNAse (Sigma, St Louis, MO) for 2 hrs at 37�C
5% CO2. After digestion, the cells extracted were washed
twice in incomplete medium (RPMI 1640, Gibco, Grand
Island, NY). Whole blood samples were obtained from the
same patients recruited for the collection of tissue specimens
before the surgical procedure, and used for the comparative
analysis between peripheral blood and cancer tissue. The
peripheral blood mononuclear cells (PBMCs) were separated
from whole blood by density gradient centrifugation using
Ficoll-Hypaque (Pharmacia Biotech, Uppsala, Sweden).

Both PBMC and tumor infiltrating cells were stained for
live/dead discrimination using Invitrogen Live/Dead fixable
violet dead cell stain kit (Invitrogen, Carlsbad, CA). Fc receptor

blocking was performed with human immunoglobulin (Sigma,
3 mg/ml final concentration) followed by surface staining with
different fluorochrome-conjugated antibodies to study the
composition of the different subpopulations. The fluorescein
isothiocyanate (FITC)-, phycoerythrin (PE)-, PE-Cy5-, allophy-
cocyanin (APC)-, phycoerythrin-Cy7 (PECy7)-, allophycocya-
nin-Cy7 (APC-Cy7)-conjugated monoclonal antibodies
(mAbs) used to characterize the entire population were the
following: anti-CD3 (Cat 45–0037 eBioscience, Cat 300412 and
Cat 300420 Biolegend), anti-CD45 (Cat 560274 BD Bioscience),
anti-pan gd TCR (Cat 555717 BD), anti-Vd1 (Cat PG196007
ThermoFisher), anti-Vd2 (Cat 331408 Biolegend), anti-CD4,
(Cat 17–0279 eBioscience), anti-CD45RA (Cat 25–0458
eBioscience), anti-CD19 (Cat 302228 Biolegend), anti-CD4,
(Cat 130–094–158 Miltenyi, Cat 348809 BD), anti CD8 (Cat
555367 BD) and anti-CD56 (Cat 341027 BD).

Expression of surface markers was determined by flow
cytometry on a FACSCanto II Flow Cytometer with the use of
the FlowJo software (BD Biosciences). The gating strategy
involved progressively measuring total cells; viable cells only;
lymphomonocytes and specific cell types. For every sample
100.000 nucleated cells were acquired and values are expressed
as percentage of viable lymphomonocytes, as gated by forward
and side scatter.

To study intracellular IFN-g, IL-17 and TNF-a, cells
from tumor and adjacent normal colon tissues were stimu-
lated with Ionomycin and PMA in the presence of monen-
sin for 4 hrs at 37�C in 5% CO2. The cells were harvested,
washed twice in PBS with 1% FCS and fixed with PBS con-
taining 4% paraformaldehyde overnight at 4�C. Fixation
was followed by permeabilization with PBS containing 1%
FCS, 0.3% saponin, and 0.1% Na azide for 15 min at 4�C.
Staining of intracellular cytokines was performed by incuba-
tion of fixed permeabilized cells with FITC-labeled anti-
IFN-g (Cat 502506 Biolegend), APC-labeled anti-IL-17A
(Cat 130–096–748 Miltenyi) and PeVio770 anti-TNF-a (Cat
130–096–748 Miltenyi). After 2 more washes in PBS con-
taining 1% FCS, the cells were analyzed by Facs Canto II
flow cytometer (BD Bioscience). Viable lymphocytes were
gated by forward and side scatter, and analysis was per-
formed on 100,000 acquired events for each sample by
using FlowJo and the following gating strategy to detect
lymphocytes from FSC/SSC, single cells, double positive
CD45C CD3C, and Vd1 and Vd2 positive T cells.

Polyclonal gd T cell lines were prepared as described previ-
ously,43-44 were labeled with CFSE (Molecular Probes, Eugene,
USA) and 5 £ 105 cells were incubated with CAF and CSC
supernatants in 24-well plates (Costar, Cambridge, MA) for 7 d
at 37�C, 5% CO2, in addition to PHA or anti CD3/CD28. Pro-
liferation was assessed after 7 d of culture according to loss of
CFSE labeling.

To obtain CD4 and CD8 polyclonal ab T cell lines, CD4 and
CD8 T cells were sorted from PBMC of healthy donors using
MACS cell separation kit, and incubated for 2 weeks with PHA,
IL-2 and Beads (Dynabeads, ThermoFisher). Cell lines were
incubated with CAF and CSC supernatants for 48 hrs and then
stained for IL-17 and IFN-g content upon Ionomycin and
PMA stimulation.
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Preparation of CAF and CSC conditioned medium, Luminex
and ELISA analysis

Primary cancer associated fibroblasts (CAFs) and colon cancer
stem cells (CSCs) were obtained from 15 surgical resection of
CRC subjected to mechanical and enzymatic digestion with col-
lagenase (0.6 mg/ml, Gibco) and hyaluronidase (10mg/ml,
Sigma). Cell suspension was cultured in 10% fetal bovine serum
(FBS) Dulbecco’s modified Eagle’s medium (DMEM) in adhe-
sion flasks, to obtain CAFs, or in low-adhesion conditions and
in serum-free medium supplemented with EGF and b-FGF,
which allows the selective growth of colon CSCs.45-46 Cells
were plated and incubated in their specific medium for 48 hrs;
the medium was then collected and used for luminex assay.

Fourthy-eight cytokines (IL-1a, IL-1b, IL-1R antagonist, IL-2,
IL-2Ra, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12, IL-12
(p40), IL-13, IL-15, IL-16, IL-17, IL-18, TNF-a, TNF-b, IFN-a2,
IFN-g, G-CSF, GM-CSF,M-CSF, FGF-b, VEGF, PDGF, MIF,
MIG, HGF, LIF, NGF-b,SCF, SCGF-b, SDF-1a, TRAIL, Eotaxin,
IP-10, IL-8, MIP-1a, MIP-1b, MCP-1, RANTES, CTACK,
GRO-a, MCP-3) were analyzed in CAF and CSC conditioned
medium by xMAP multiplex technology on the Luminex plat-
form (Luminex, Austin, TX), using Bio-Rad reagents (Bio-Plex
ProTM Human Cytokine 27-plex Assay #M500KCAF0Y and
Bio-Plex ProTM Human Cytokine 21-plex Assay #MF0005KMII,
Bio-Rad, Hercules, CA) acquired and analyzed with the Bioplex
Manager Software (Bio-Rad). Responses were scored positive if
the value was 2-fold over the negative control. TGF-b and OPN
were measured by ELISA according to the manufacturer’s
instructions (R&D Systems).46

Immunfluorescence analysis

Fresh frozen tissue samples were incubated with primary anti-
bodies to the pan-gd TCR and CD3 and in a subsequent sec-
ondary step, FITC-conjugated goat anti-rabbit and Rhodamine
B200-conjugated goat anti-mouse IgG were used to detect
them. Irrelevant isotype-matched primary mAbs were used to
control for nonspecific staining. Analysis was performed with a
confocal laser scanning microscopy equipped with 20x, 40x
and 63x objectives. The tumor border configuration was diag-
nosed according to the method proposed by Jass et al.47 at low
magnification. Briefly, the tumor margins were identified as
infiltrating when there was no recognizable margin of growth
and a “streaming dissection” between the normal structures of
the bowel wall was present. Margins were considered pushing
when they were reasonably well circumscribed, and they often
were associated with a well-developed inflammatory lamina.

Transcriptome analysis

Public raw data of 585 colon cancers transcriptomes using
Affymetrix HGU133 Plus 2.0 microarrays were downloaded
from the NCBI-GEO data set repository (GSE3958229, https://
www.ncbi.nlm.nih.gov/geo), normalized together and collapsed
to HUGO gene symbols using chipset definition files available
from the NCBI gene expression omnibus. The Pearson correla-
tion coefficient between IFNG, IL17A, TRGV9 and CD3D gene
expressions were calculated.

Deconvolution of immune population are calculated using
the CIBERSORT software with 500 Monte Carlo iterations30

(https://cibersort.stanford.edu/) associated with the LM7
matrix.31 Sample Enrichment Scores (SES)48 of immune genes
were computed using the open source software AutoCompare-
SES (https://sites.google.com/site/fredsoftwares/products/auto
compare_ses) with normalized settings. ab and gd TIL abun-
dance were automatically calculated from the deconvolution
result and SES using the open source software DeepTIL
(https://sites.google.com/site/fredsoftwares/products/deeptil).31

SPADE analysis

Spanning-tree progression analysis of density-normalized
events (SPADE)49 clustering algorithm on the Cytobank.org
platform was performed to visualize single cells, among live
CD45C lymphocytes from 6 subjects. The nodes of the tree
reproduce clusters of cells that are similar in marker expression.
SPADE uses the size and color of each node to signify the num-
ber of cells and median marker expression, respectively.

Statistics

Data were analyzed for statistical significance using Mann-
Whitney test for 2 groups and Kruskal-Wallis test for more
than 2 groups. Differences between groups with a probability of
� 0.05 were regarded as significant. All data were analyzed
using GraphPad Prism version 6.0e (GraphPad, San Diego,
CA). All values are expressed as mean § SD. Comparison of
TIL abundance in clinical groups were done using unpaired
Student t-test.

For Kaplan-Meier plots, optimal cutoffs were determined
with the survival R package50 and the Log-Rank p values were
corrected using the Benjamini-Hochberg method.51
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