72 research outputs found

    Host-microbe cross-talk in the lung microenvironment:implications for understanding and treating chronic lung disease

    Get PDF
    Chronic respiratory diseases are highly prevalent worldwide and will continue to rise in the foreseeable future. Despite intensive efforts over recent decades, the development of novel and effective therapeutic approaches has been slow. However, there is new and increasing evidence that communities of micro-organisms in our body, the human microbiome, are crucially involved in the development and progression of chronic respiratory diseases. Understanding the detailed mechanisms underlying this cross-talk between host and microbiota is critical for development of microbiome- or host-targeted therapeutics and prevention strategies. Here we review and discuss the most recent knowledge on the continuous reciprocal interaction between the host and microbes in health and respiratory disease. Furthermore, we highlight promising developments in microbiome-based therapies and discuss the need to employ more holistic approaches of restoring both the pulmonary niche and the microbial community

    Cigarette smoke extract induced exosome release is mediated by depletion of exofacial thiols and can be inhibited by thiol-antioxidants

    Get PDF
    Introduction: Airway epithelial cells have been described to release extracellular vesicles (EVs) with pathological properties when exposed to cigarette smoke extract (CSE). As CSE causes oxidative stress, we investigated whether its oxidative components are responsible for inducing EV release and whether this could be prevented using the thiol antioxidants N-acetyl-L-cysteine (NAC) or glutathione (GSH). Methods: BEAS-2B cells were exposed for 24 h to CSE, H2O2, acrolein, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), bacitracin, rutin or the anti-protein disulfide isomerase (PDI) antibody clone RL90; with or without NAC or GSH. EVs in media were measured using CD63(+)CD81(+) bead-coupled flow cytometry or tunable resistive pulse sensing (TRPS). For characterization by Western Blotting, cryo-transmission electron microscopy and TRPS, EVs were isolated using ultracentrifugation. Glutathione disulfide and GSH in cells were assessed by a GSH reductase cycling assay, and exofacial thiols using Flow cytometry. Results: CSE augmented the release of the EV subtype exosomes, which could be prevented by scavenging thiol-reactive components using NAC or GSH. Among thiol-reactive CSE components, H2O2 had no effect on exosome release, whereas acrolein imitated the NAC-reversible exosome induction. The exosome induction by CSE and acrolein was paralleled by depletion of cell surface thiols. Membrane impermeable thiol blocking agents, but not specific inhibitors of the exofacially located thiol-dependent enzyme PDI, stimulated exosome release. Summary/conclusion: Thiol-reactive compounds like acrolein account for CSE-induced exosome release by reacting with cell surface thiols. As acrolein is produced endogenously during inflammation, it may influence exosome release not only in smokers, but also in ex-smokers with chronic obstructive pulmonary disease. NAC and GSH prevent acrolein-and CSE-induced exosome release, which may contribute to the clinical benefits of NAC treatment

    The host immune response contributes to Haemophilus influenzae virulence

    Get PDF
    SummaryBackgroundThere is compelling evidence that infections with non-typeable Haemophilus influenzae (NTHi) are associated with exacerbations in COPD patients. However, NTHi has also been isolated frequently during clinically stable disease. In this study we tested the hypothesis that genetically distinct NTHi isolates obtained from COPD patients differ in virulence which could account for dissimilarities in the final outcome of an infection (stable vs. exacerbation).ResultsNTHi isolates (n = 32) were obtained from stable COPD patients, or during exacerbations. Genetically divergent NTHi isolates were selected and induction of inflammation was assessed as an indicator of virulence using different in vitro models. Despite marked genomic differences among NTHi isolates, in vitro studies could not distinguish between NTHi isolates based on their inflammatory capacities. Alternatively, when using a whole blood assay results demonstrated marked inter-, but not intra-individual differences in cytokine release between healthy volunteers irrespective of the origin of the NTHi isolate used.ConclusionResults suggest that the individual immune reactivity might be an important predictor for the clinical outcome (exacerbation vs. no exacerbation) following NTHi infection

    Detection of amyloid beta aggregates in the brain of BALB/c mice after Chlamydia pneumoniae infection

    Get PDF
    Neuroinflammation, initiated by cerebral infection, is increasingly postulated as an aetiological factor in neurodegenerative diseases such as Alzheimer’s disease (AD). We investigated whether Chlamydia pneumoniae (Cpn) infection results in extracellular aggregation of amyloid beta (Aβ) in BALB/c mice. At 1 week post intranasal infection (p.i.), Cpn DNA was detected predominantly in the olfactory bulbs by PCR, whereas brains at 1 and 3 months p.i. were Cpn negative. At 1 and 3 months p.i., extracellular Aβ immunoreactivity was detected in the brain of Cpn-infected mice but also in the brain of mock-infected mice and mice that were neither Cpn infected nor mock infected. However, these extracellular Aβ aggregates showed morphological differences compared to extracellular Aβ aggregates detected in the brain of transgenic APP751SL/PS1M146L mice. These data do not unequivocally support the hypothesis that Cpn infection induces the formation of AD-like Aβ plaques in the brain of BALB/c mice, as suggested before. However, future studies are required to resolve these differences and to investigate whether Cpn is indeed an etiological factor in AD pathogenesis

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Gram-negative bacterial membrane vesicle release in response to the host-environment: different threats, same trick?

    No full text
    Bacteria are confronted with a multitude of stressors when occupying niches within the host. These stressors originate from host defense mechanisms, other bacteria during niche competition or result from physiological challenges such as nutrient limitation. To counteract these stressors, bacteria have developed a stress-induced network to mount the adaptations required for survival. These stress-induced adaptations include the release of membrane vesicles from the bacterial envelope. Membrane vesicles can provide bacteria with a plethora of immediate and ultimate benefits for coping with environmental stressors. This review addresses how membrane vesicles aid Gram-negative bacteria to cope with host-associated stress factors, focusing on vesicle biogenesis and the physiological functions. As many of the pathways, that drive vesicle biogenesis, confer we propose that shedding of membrane vesicles by Gram-negative bacteria entails an integrated part of general stress responses

    Bead-based flow-cytometry for semi-quantitative analysis of complex membrane vesicle populations released by bacteria and host cells

    Get PDF
    During infection, the release of nano-sized membrane vesicle is a process which is common both for bacteria and host cells. Host cell-derived membrane vesicles can be involved in innate and adaptive immunity whereas bacterial membrane vesicles can contribute to bacterial pathogenicity. To study the contribution of both membrane vesicle populations during infection is highly complicated as most vesicles fall within a similar size range of 30-300 nm. Specialized techniques for purification are required and often no single technique complies on its own. Moreover, techniques for vesicle quantification are either complicated to use or do not distinguish between host cell-derived and bacterial membrane vesicle subpopulations. Here we demonstrate a bead-based platform that allows a semi-quantitatively analysis by flow-cytometry of bacterial and host-cell derived membrane vesicles. We show this method can be used to study heterogeneous and complex vesicle populations composed of bacterial and host-cell membrane vesicles. The easy accessible design of the protocol makes it also highly suitable for screening procedures to assess how intrinsic and environmental factors affect vesicle release.</p
    • …
    corecore