27 research outputs found

    Molecular changes during TGFβ-mediated lung fibroblast-myofibroblast differentiation: implication for glucocorticoid resistance

    Get PDF
    Airway remodeling is an important process in response to repetitive inflammatory-mediated airway wall injuries. This is characterized by profound changes and reorganizations at the cellular and molecular levels of the lung tissue. It is of particular importance to understand the mechanisms involved in airway remodeling, as this is strongly associated with severe asthma leading to devastating airway dysfunction. In this study, we have investigated the transforming growth factor-β (TGFβ, a proinflammatory mediator)-activated fibroblast to myofibroblast transdifferentiation pathway, which plays a key role in asthma-related airway remodeling. We show that TGFβ induces fibroblast to myofibroblast transdifferentiation by the expression of αSMA, a specific myofibroblast marker. Furthermore, Smad2/Smad3 gene and protein expression patterns are different between fibroblasts and myofibroblasts. Such a change in expression patterns reveals an important role of these proteins in the cellular phenotype as well as their regulation by TGFβ during cellular transdifferentiation. Interestingly, our data show a myofibroblastic TGFβ-mediated increase in glucocorticoid receptor (GR) expression and a preferential localization of GR in the nucleus, compared to in fibroblasts. Furthermore, the GRβ (nonfunctional GR isoform) is increased relative to GRα (functional isoform) in myofibroblasts. These results are interesting as they support the idea of a GRβ-mediated glucocorticoid resistance observed in the severe asthmatic population. All together, we provide evidence that key players are involved in the TGFβ-mediated fibroblast to myofibroblast transdifferentiation pathway in a human lung fibroblast cell line. These players could be the targets of new treatments to limit airway remodeling and reverse glucocorticoid resistance in severe asthma.This work is supported by the University of Canberra Strategic Research Funds (grant to R. Ghildyal, postdoctoral fellowship to D. Heydet) and an Early Career Grant from Centre for Research in Therapeutic Solutions (to D. Heydet)

    No evidence for genome editing in mouse zygotes and HEK293T human cell line using the DNA-guided Natronobacterium gregoryi Argonaute (NgAgo)

    Get PDF
    A recently published research article reported that the extreme halophile archaebacterium Natronobacterium gregoryi Argonaute enzyme (NgAgo) could cleave the cellular DNA under physiological temperature conditions in cell line and be implemented as an alternative to CRISPR/Cas9 genome editing technology. We assessed this claim in mouse zygotes for four loci (Sptb, Tet-1, Tet-2 and Tet-3) and in the human HEK293T cell line for the EMX1 locus. Over 100 zygotes were microinjected with nls-NgAgo-GK plasmid provided from Addgene and various concentrations of 5’-phosphorylated guide DNA (gDNA) from 2.5 ng/ μl to 50 ng/μl and cultured to blastocyst stage of development. The presence of indels was verified using T7 endonuclease 1 assay (T7E1) and Sanger sequencing. We reported no evidence of successful editing of the mouse genome. We then assessed the lack of editing efficiency in HEK293T cell line for the EMX1 endogenous locus by monitoring the NgAgo protein expression level and the editing efficiency by T7E1 assay and Sanger sequencing. We reported that the NgAgo protein was expressed from 8 hours to a maximum expression at 48 hours post-transfection, confirming the efficient delivery of the plasmid and the gDNA but no evidence of successful editing of EMX1 target in all transfected samples. Together our findings indicate that we failed to edit using NgAgo.This work was supported from the National Collaborative Research Infrastructure (NCRIS) through the Australian Phenomics Network in Australi

    Respiratory Syncytial Virus Matrix Protein-Chromatin Association Is Key to Transcriptional Inhibition in Infected Cells

    Get PDF
    The morbidity and mortality caused by the globally prevalent human respiratory pathogen respiratory syncytial virus (RSV) approaches that world-wide of influenza. We previously demonstrated that the RSV matrix (M) protein shuttles, in signal-dependent fashion, between host cell nucleus and cytoplasm, and that this trafficking is central to RSV replication and assembly. Here we analyze in detail the nuclear role of M for the first time using a range of novel approaches, including quantitative analysis of de novo cell transcription in situ in the presence or absence of RSV infection or M ectopic expression, as well as in situ DNA binding. We show that M, dependent on amino acids 110–183, inhibits host cell transcription in RSV-infected cells as well as cells transfected to express M, with a clear correlation between nuclear levels of M and the degree of transcriptional inhibition. Analysis of bacterially expressed M protein and derivatives thereof mutated in key residues within M’s RNA binding domain indicates that M can bind to DNA as well as RNA in a cell-free system. Parallel results for point-mutated M derivatives implicate arginine 170 and lysine 172, in contrast to other basic residues such as lysine 121 and 130, as critically important residues for inhibition of transcription and DNA binding both in situ and in vitro. Importantly, recombinant RSV carrying arginine 170/lysine 172 mutations shows attenuated infectivity in cultured cells and in an animal model, concomitant with altered inflammatory responses. These findings define an RSV M-chromatin interface critical for host transcriptional inhibition in infection, with important implications for anti-RSV therapeutic development

    KCC1 Activation protects Mice from the Development of Experimental Cerebral Malaria

    Get PDF
    Plasmodium falciparum malaria causes half a million deaths per year, with up to 9% of this mortality caused by cerebral malaria (CM). One of the major processes contributing to the development of CM is an excess of host inflammatory cytokines. Recently K+ signaling has emerged as an important mediator of the inflammatory response to infection; we therefore investigated whether mice carrying an ENU induced activation of the electroneutral K+ channel KCC1 had an altered response to Plasmodium berghei. Here we show that KCC1(M935K/M935K )mice are protected from the development of experimental cerebral malaria, and that this protection is associated with an increased CD4+ and TNFa response. This is the first description of a K+ channel affecting the development of experimental cerebral malaria.We would like to acknowledge Shelley Lampkin and Australian Phenomics Facility (APF) for the maintenance of the mouse colonies. Tis study was funded by the National Health and Medical Research Council of Australia (Program Grant 490037, and Project Grants 605524 and APP1047090), the National Collaborative Research Infrastructure Strategy (NCRIS), the Education Investment Fund from the Department of Education and Training, the Australian Phenomics Network, Howard Hughes Medical Institute and the Bill and Melinda Gates Foundation

    Unstable chromosome rearrangements in Staphylococcus aureus cause phenotype switching associated with persistent infections

    Get PDF
    Staphylococcus aureus small-colony variants (SCVs) are associated with unusually chronic and persistent infections despite active antibiotic treatment. The molecular basis for this clinically important phenomenon is poorly understood, hampered by the instability of the SCV phenotype. Here we investigated the genetic basis for an unstable S. aureus SCV that arose spontaneously while studying rifampicin resistance. This SCV showed no nucleotide differences across its genome compared with a normal-colony variant (NCV) revertant, yet the SCV presented the hallmarks of S. aureus linked to persistent infection: down-regulation of virulence genes and reduced hemolysis and neutrophil chemotaxis, while exhibiting increased survival in blood and ability to invade host cells. Further genome analysis revealed chromosome structural variation uniquely associated with the SCV. These variations included an asymmetric inversion across half of the S. aureus chromosome via recombination between type I restriction modification system (T1RMS) genes, and the activation of a conserved prophage harboring the immune evasion cluster (IEC). Phenotypic reversion to the wild-type–like NCV state correlated with reversal of the chromosomal inversion (CI) and with prophage stabilization. Further analysis of 29 complete S. aureus genomes showed strong signatures of recombination between hsdMS genes, suggesting that analogous CI has repeatedly occurred during S. aureus evolution. Using qPCR and long-read amplicon deep sequencing, we detected subpopulations with T1RMS rearrangements causing CIs and prophage activation across major S. aureus lineages. Here, we have discovered a previously unrecognized and widespread mechanism of reversible genomic instability in S. aureus associated with SCV generation and persistent infections.A.H. is supported by the H2020-MSCA-Global Fellowship (Grant 657766). Doherty Applied Microbial Genomics is funded by the Department of Microbiology and Immunology at The University of Melbourn

    Host Porphobilinogen Deaminase Deficiency Confers Malaria Resistance in Plasmodium chabaudi but Not in Plasmodium berghei or Plasmodium falciparum During Intraerythrocytic Growth

    Get PDF
    An important component in host resistance to malaria infection are inherited mutations that give rise to abnormalities and deficiencies in erythrocyte proteins and enzymes. Understanding how such mutations confer protection against the disease may be useful for developing new treatment strategies. A mouse ENU-induced mutagenesis screen for novel malaria resistance-conferring mutations identified a novel non-sense mutation in the gene encoding porphobilinogen deaminase (PBGD) in mice, denoted here as PbgdMRI58155. Heterozygote PbgdMRI58155 mice exhibited ~50% reduction in cellular PBGD activity in both mature erythrocytes and reticulocytes, although enzyme activity was ~10 times higher in reticulocytes than erythrocytes. When challenged with blood-stage P. chabaudi, which preferentially infects erythrocytes, heterozygote mice showed a modest but significant resistance to infection, including reduced parasite growth. A series of assays conducted to investigate the mechanism of resistance indicated that mutant erythrocyte invasion by P. chabaudi was normal, but that following intraerythrocytic establishment a significantly greater proportions of parasites died and therefore, affected their ability to propagate. The Plasmodium resistance phenotype was not recapitulated in Pbgd-deficient mice infected with P. berghei, which prefers reticulocytes, or when P. falciparum was cultured in erythrocytes from patients with acute intermittent porphyria (AIP), which had modest (20-50%) reduced levels of PBGD. Furthermore, the growth of Pbgd-null P. falciparum and Pbgd-null P. berghei parasites, which grew at the same rate as their wild-type counterparts in normal cells, were not affected by the PBGD-deficient background of the AIP erythrocytes or Pbgd-deficient mice. Our results confirm the dispensability of parasite PBGD for P. berghei infection and intraerythrocytic growth of P. falciparum, but for the first time identify a requirement for host erythrocyte PBGD by P. chabaudi during in vivo blood stage infection.The authors were supported by an International Macquarie University Research Excellence Scholarship (CS), the NHMRC (490037, 605524, APP1047090, and APP1066502), the Australian Research Council (DP120100061) and the National Collaborative Research Infrastructure (NCRIS) via the Australian Phenomics Network (APN)

    Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: A multi-center evaluation

    Get PDF
    Background CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as “two-donor floxing” method). Results We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles. We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are 10- to 20-fold more efficient than the two-donor approach. Conclusion We propose that the two-donor method lacks efficiency because it relies on two simultaneous recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-donor methods offer higher efficiencies for the routine generation of cKO animal models.This work was supported by the National Collaborative Research Infrastructure (NCRIS) via the Australian Phenomics Network (APN) (to Gaetan Burgio and Paul Thomas), by an Institutional Development Award (PI: Shelley Smith) P20GM103471 (to CBG, RMQ, DWH, JDE, and RR), by NIGMS 1P30GM110768-01 and P30CA036727 (as part of support to University of Nebraska Mouse Genome Engineering and DNA Sequencing Cores), the British Heart Foundation FS12-57, FS12/57/29717, and CH/13/2/30154 and the program grant RG/15/12/31616 (to Kathryn Hentges and Bernard Keavney), the Wellcome Trust grants 107849/Z/ 15/Z, 097820/Z11/B, and 105610/Z/14/Z, the Medical Research Council MR/ N029992/1 (to DB and CBL), the National BioResource Project of Ministry of Education, Culture, Sports, Science and Technology/Japan Agency for Medical Research and Development (MEXT/AMED), Japan, the Canadian Institutes of Health Research MOP#142452 (MCB and LJM). LJM is a member of the Research Centre of the McGill University Health Centre which is supported in part by FQRS. Dr. William Thompson was supported by the Indiana Clinical and Translational Sciences Institute, funded in part by grant #UL1 TR001108 from the National Institute of Health (NIH), National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. KC Kent Lloyd is supported by the NIH (UM1OD023221), and work contributed by staff from the UC Davis Mouse Biology Program (MBP) is supported by a grant from the American College of Laboratory Animal Medicine. The work contributed from Xiande Liu, Chad Smith, Eric Jonasch, Xuesong Zhang, and Jan ParkerThornburg is supported by the NIH under the award number P30CA16672 (XL, CS, EJ, XZ, JPT) and R50CA211121 (JPT). Joseph Miano is supported by the NIH under the award number HL138987. R Sedlacek was supported by LM2015040 (Czech Centre for Phenogenomics), CZ.1.05/1.1.00/02.0109 (BIOCEV), and CZ.1.05/2.1.00/19.0395 by the Ministry of Education, Youth and Sports (MEYS) and by Academy of Sciences of the Czech Republic (RVO 68378050). David Ray was supported by a Wellcome Trust Investigator (107849/Z/15/Z) and the Medical Research Council (MR/P011853/1 and MR/P023576/) grants. Andrew Loudon was supported by a Wellcome Trust Investigator (107849/Z/15/Z), Biotechnology and Biological Sciences Research Council (BB/N015584/1), Medical Research Council (MR/P023576/1). The work contributed from Gloria Lopez-Castejon is supported by the Wellcome Trust (104192/Z/14/Z) and the Royal Society. Pilar Alcaide was supported by the NIH (HL 123658). The work contributed from Surinder K. Batra is supported by the NIH under the award number P01 CA217798

    GSTO1-1 plays a pro-inflammatory role in models of inflammation, colitis and obesity

    Get PDF
    Glutathione transferase Omega 1 (GSTO1-1) is an atypical GST reported to play a pro-inflammatory role in response to LPS. Here we show that genetic knockout of Gsto1 alters the response of mice to three distinct inflammatory disease models. GSTO1-1 deficiency ameliorates the inflammatory response stimulated by LPS and attenuates the inflammatory impact of a high fat diet on glucose tolerance and insulin resistance. In contrast, GSTO1-1 deficient mice show a more severe inflammatory response and increased escape of bacteria from the colon into the lymphatic system in a dextran sodium sulfate mediated model of inflammatory bowel disease. These responses are similar to those of TLR4 and MyD88 deficient mice in these models and confirm that GSTO1-1 is critical for a TLR4-like pro-inflammatory response in vivo. In wild-type mice, we show that a small molecule inhibitor that covalently binds in the active site of GSTO1-1 can be used to ameliorate the inflammatory response to LPS. Our findings demonstrate the potential therapeutic utility of GSTO1-1 inhibitors in the modulation of inflammation and suggest their possible application in the treatment of a range of inflammatory conditions.This work was supported by a grant from the Gretel and Gordon Bootes Medical Research Foundation to D.M. and P.B. The National Health and Medical Research Council of Australia (NHMRC) is thanked for Project Grant APP1124673 to PB, MC, LO, AO, and Fellowship support for J.B. (2012–2016 Senior Research Fellowship #1020411). J.B. acknowledges the Australian Federal Government Education Investment Fund Super Science Initiative and the Victorian State Government, Victoria Science Agenda Investment Fund for infrastructure support, and Translating Health Discovery (THD) NCRIS soft infrastructure support through Terapeutic Innovation Australia (TIA)

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF

    Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On- and Off-Target Damage: Techniques for Detecting, Predicting, and Mitigating the On- and off-target Effects of Cas9 Editing

    No full text
    Large deletions and genomic re-arrangements are increasingly recognized as common products of double-strand break repair at Clustered Regularly Interspaced, Short Palindromic Repeats - CRISPR associated protein 9 (CRISPR/Cas9) on-target sites. Together with well-known off-target editing products from Cas9 target misrecognition, these are important limitations, that need to be addressed. Rigorous assessment of Cas9-editing is necessary to ensure validity of observed phenotypes in Cas9-edited cell-lines and model organisms. Here the mechanisms of Cas9 specificity, and strategies to assess and mitigate unwanted effects of Cas9 editing are reviewed; covering guide-RNA design, RNA modifications, Cas9 modifications, control of Cas9 activity; computational prediction for off-targets, and experimental methods for detecting Cas9 cleavage. Although recognition of the prevalence of on- and off-target effects of Cas9 editing has increased in recent years, broader uptake across the gene editing community will be important in determining the specificity of Cas9 across diverse applications and organisms.This work was partly supported from the National Health and Medical Research Council of Australia (APP1143008), the Australian Research Council (DP180101494), the National Natural Science Foundation of China (81772214), The Australian Rese the National Collaborative Research Infrastructure Strategy (NCRIS) via, Phenomics Australian. A.N. is supported from an Australian Government Research Training Program Scholarship
    corecore