15 research outputs found

    CCDC22 deficiency in humans blunts activation of proinflammatory NF-kappa B signaling

    Get PDF
    NF-kappa B is a master regulator of inflammation and has been implicated in the pathogenesis of immune disorders and cancer. Its regulation involves a variety of steps, including the controlled degradation of inhibitory I kappa B proteins. In addition, the inactivation of DNA-bound NF-kappa B is essential for its regulation. This step requires a factor known as copper metabolism Murr1 domain-containing 1 (COMMD1), the prototype member of a conserved gene family. While COMMD proteins have been linked to the ubiquitination pathway, little else is known about other family members. Here we demonstrate that all COMMD proteins bind to CCDC22, a factor recently implicated in X-linked intellectual disability (XLID). We showed that an XLID-associated CCDC22 mutation decreased CCDC22 protein expression and impaired its binding to COMMD proteins. Moreover, some affected individuals displayed ectodermal dysplasia, a congenital condition that can result from developmental NF-kappa B blockade. Indeed, patient-derived cells demonstrated impaired NF-kappa B activation due to decreased I kappa B ubiquitination and degradation. In addition, we found that COMMD8 acted in conjunction with CCDC22 to direct the degradation of I kappa B proteins. Taken together, our results indicate that CCDC22 participates in NF-kappa B activation and that its deficiency leads to decreased I kappa B turnover in humans, highlighting an important regulatory component of this pathway

    A predictive density for semiparametric scale and location models

    Get PDF
    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.Christine A. Phillips-Krawczak, Amika Singla, Petro Starokadomskyy, Zhihui Deng, Douglas G. Osbornea, Haiying Li, Christopher J. Dick, Timothy S. Gomez, Megan Koenecke, Jin-San Zhang, Haiming Dai, Luis F. Sifuentes-Dominguez, Linda N. Geng, Scott H. Kaufmann, Marco Y. Hein, Mathew Wallis, Julie McGaughran, Jozef Gecz, Bart van de Sluis, Daniel D. Billadeau and Ezra Burstei

    Copper Metabolism Domain-Containing 1 Represses Genes That Promote Inflammation and Protects Mice From Colitis and Colitis-Associated Cancer

    Get PDF
    BACKGROUND & AIMS: Activation of the transcription factor nuclear factor-kappa B (NF-kappa B) has been associated with the development of inflammatory bowel disease (IBD). Copper metabolism MURR1 domain containing 1 (COMMD1), a regulator of various transport pathways, has been shown to limit NF-kappa B activation. We investigated the roles of COMMD1 in the pathogenesis of colitis in mice and IBD in human beings. METHODS: We created mice with a specific disruption of Commd1 in myeloid cells (Mye-knockout [K/O] mice); we analyzed immune cell populations and functions and expression of genes regulated by NF-kappa B. Sepsis was induced in Mye-K/O and wild-type mice by cecal ligation and puncture or intraperitoneal injection of lipopolysaccharide (LPS), colitis was induced by administration of dextran sodium sulfate, and colitis-associated cancer was induced by administration of dextran sodium sulfate and azoxymethane. We measured levels of COMMD1 messenger RNA in colon biopsy specimens from 29 patients with IBD and 16 patients without (controls), and validated findings in an independent cohort (17 patients with IBD and 22 controls). We searched for polymorphisms in or near COMMD1 that were associated with IBD using data from the International IBD Genetics Consortium and performed quantitative trait locus analysis. RESULTS: In comparing gene expression patterns between myeloid cells from Mye-K/O and wild-type mice, we found that COMMD1 represses expression of genes induced by LPS. Mye-K/O mice had more intense inflammatory responses to LPS and developed more severe sepsis and colitis, with greater mortality. More Mye-K/O mice with colitis developed colon dysplasia and tumors than wild-type mice. We observed a reduced expression of COMMD1 in colon biopsy specimens and circulating leukocytes from patients with IBD. We associated single-nucleotide variants near COMMD1 with reduced expression of the gene and linked them with increased risk for ulcerative colitis. CONCLUSIONS: Expression of COMMD1 by myeloid cells has anti-inflammatory effects. Reduced expression or function of COMMD1 could be involved in the pathogenesis of IBD
    corecore