241 research outputs found

    In-flight maintenance study Final report

    Get PDF
    Sample system analysis, MF requirements, redesign, and packaging desig

    On the Effects of Droplet Loading on the Structure of Spray Jets

    Get PDF
    This paper uses advanced laser diagnostics to investigate the effects of droplet loading on the structure and mixing patterns of sprays in a non-reacting, turbulent jet. A nozzle designed at University of Sydney with the objective of studying spray flames has been used for producing a two phase flow in a co-flowing air stream with well defined boundary conditions. Varying the quantity of liquid injective will vary the number density of the droplets in the flow. The co-flowing air stream is seeded with a fixed concentration of nitric oxide, NO which will act as a conserved scalar. Laser induced fluorescence of NO is exploited to provide a direct quantitative measure of the mixture fraction. Radial profiles of the mean and the rms of mixture fraction has been collected at various axial positions in jets with different spray loadings. It is found that mixture fraction profiles are different from those measured in turbulent gaseous jets and increasing the droplet loading increases the mixture fraction of the jet due to evaporating droplets

    Formulation of a telemetry computer program, supplement 2 Final report

    Get PDF
    Algorithm for simultaneous minimization of multiple Boolean functions with application to telemetry syste

    A micro electromagnetic generator for vibration energy harvesting

    No full text
    Vibration energy harvesting is receiving a considerable amount of interest as a means for powering wireless sensor nodes. This paper presents a small (component volume 0.1 cm3, practical volume 0.15 cm3) electromagnetic generator utilizing discrete components and optimized for a low ambient vibration level based upon real application data. The generator uses four magnets arranged on an etched cantilever with a wound coil located within the moving magnetic field. Magnet size and coil properties were optimized, with the final device producing 46 µW in a resistive load of 4 k? from just 0.59 m s-2 acceleration levels at its resonant frequency of 52 Hz. A voltage of 428 mVrms was obtained from the generator with a 2300 turn coil which has proved sufficient for subsequent rectification and voltage step-up circuitry. The generator delivers 30% of the power supplied from the environment to useful electrical power in the load. This generator compares very favourably with other demonstrated examples in the literature, both in terms of normalized power density and efficiency

    Multimodal augmented reality tangible gaming

    Get PDF
    This paper presents tangible augmented reality gaming environment that can be used to enhance entertainment using a multimodal tracking interface. Players can interact using different combinations between a pinch glove, a Wiimote, a six-degrees-of-freedom tracker, through tangible ways as well as through I/O controls. Two tabletop augmented reality games have been designed and implemented including a racing game and a pile game. The goal of the augmented reality racing game is to start the car and move around the track without colliding with either the wall or the objects that exist in the gaming arena. Initial evaluation results showed that multimodal-based interaction games can be beneficial in gaming. Based on these results, an augmented reality pile game was implemented with goal of completing a circuit of pipes (from a starting point to an end point on a grid). Initial evaluation showed that tangible interaction is preferred to keyboard interaction and that tangible games are much more enjoyable

    Neonicotinoids thiamethoxam and clothianidin adversely affect the colonisation of invertebrate populations in aquatic microcosms

    Get PDF
    Surface waters are sometimes contaminated with neonicotinoids: a widespread, persistent, systemic class of insecticide with leaching potential. Previous ecotoxicological investigations of this chemical class in aquatic ecosystems have largely focused on the impacts of the neonicotinoid imidacloprid; few empirical, manipulative studies have investigated the effect on invertebrate abundances of two other neonicotinoids which are now more widely used: clothianidin and thiamethoxam. In this study, we employ a simple microcosm semi-field design, incorporating a one-off contamination event, to investigate the effect of these pesticides at field-realistic levels (ranging from 0 to 15 ppb) on invertebrate colonisation and survival in small ephemeral ponds. In line with previous research on neonicotinoid impacts on aquatic invertebrates, significant negative effects of both neonicotinoids were found. There were clear differences between the two chemicals, with thiamethoxam generally producing stronger negative effects than clothianidin. Populations of Chironomids (Diptera) and Ostracoda were negatively affected by both chemicals, while Culicidae appeared to be unaffected by clothianidin at the doses used. Our data demonstrate that field-realistic concentrations of neonicotinoids are likely to reduce populations of invertebrates found in ephemeral ponds, which may have knock on effects up the food chain. We highlight the importance of developing pesticide monitoring schemes for European surface waters

    Recognition of Crowd Behavior from Mobile Sensors with Pattern Analysis and Graph Clustering Methods

    Full text link
    Mobile on-body sensing has distinct advantages for the analysis and understanding of crowd dynamics: sensing is not geographically restricted to a specific instrumented area, mobile phones offer on-body sensing and they are already deployed on a large scale, and the rich sets of sensors they contain allows one to characterize the behavior of users through pattern recognition techniques. In this paper we present a methodological framework for the machine recognition of crowd behavior from on-body sensors, such as those in mobile phones. The recognition of crowd behaviors opens the way to the acquisition of large-scale datasets for the analysis and understanding of crowd dynamics. It has also practical safety applications by providing improved crowd situational awareness in cases of emergency. The framework comprises: behavioral recognition with the user's mobile device, pairwise analyses of the activity relatedness of two users, and graph clustering in order to uncover globally, which users participate in a given crowd behavior. We illustrate this framework for the identification of groups of persons walking, using empirically collected data. We discuss the challenges and research avenues for theoretical and applied mathematics arising from the mobile sensing of crowd behaviors

    Incentivizing the Use of Quantified Self Devices: The Cases of Digital Occupational Health Programs and Data-Driven Health Insurance Plans

    Get PDF
    Initially designed for a use in private settings, smartwatches, activity trackers and other quantified self devices are receiving a growing attention from the organizational environment. Firms and health insurance companies, in particular, are developing digital occupational health programs and data-driven health insurance plans centered around these systems, in the hope of exploiting their potential to improve individual health management, but also to gather large quantities of data. As individual participation in such organizational programs is voluntary, organizations often rely on motivational incentives to prompt engagement. Yet, little is known about the mechanisms employed in organizational settings to incentivize the use of quantified self devices. We therefore seek, in this exploratory paper, to offer a first structured overview of this topic and identify the main motivational incentives in two emblematical cases: digital occupational health programs and data-driven health insurance plans. By doing so, we aim to specify the nature of this new dynamic around the use of quantified self devices and define some of the key lines for further investigation

    Read My Lips: Continuous Signer Independent Weakly Supervised Viseme Recognition

    Full text link
    Abstract. This work presents a framework to recognise signer indepen-dent mouthings in continuous sign language, with no manual annotations needed. Mouthings represent lip-movements that correspond to pronun-ciations of words or parts of them during signing. Research on sign lan-guage recognition has focused extensively on the hands as features. But sign language is multi-modal and a full understanding particularly with respect to its lexical variety, language idioms and grammatical structures is not possible without further exploring the remaining information chan-nels. To our knowledge no previous work has explored dedicated viseme recognition in the context of sign language recognition. The approach is trained on over 180.000 unlabelled frames and reaches 47.1 % precision on the frame level. Generalisation across individuals and the influence of context-dependent visemes are analysed
    corecore