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FOREWORD

This supplement to the final report is presented in response
Y

to Paragraph III.2 of Exhibit A of Contract NAS8-24017.
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ABSTRACT

The algorithm described is a fast algorithm for the simultaneous

minimization of multiple Boolean functions to a two-level AND-OR form.

The major advantages of the algorithm are that it is fast, does not re-

quire excessive storage capacity, handles multiple functions, and utilizes

unused input states (don't cares) for simplifying the functions. The

program as written handles up to to variables with no limit to the number 	
%

of functions; however, the resultant total number of prime implicants may

not exceed 3073.

As an example of the performance of the algorithm, a problem consisting

of ten functions with ten variables took about 50 seconds of CPU time on a

CDC 6500 computer. These ten functions were nominal type functions with

approximately 50 percent of the vertices filled. A worst case ten function

13 variable problem took 35 minutes. This problem is considered worst case

because it contained 6392 don't care vertices out of the 8192 total per

function. This large number of don't cares increases, the search time for

prime implicants and also gives a large number of prime implicants, thereby

increasing the time required for final selection.

This algorithm thus provides the capability for minimizing a set of

functions of a large number of variables which were previously done poorly

by manual methods and could not be done by computer because of excessive

time and storage requirements.

iv
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I. INTRODUCTION

This paper describes a computerized procedure for reducing, or

simplifying a set of Boolean equations. This is a process which is

required for determining a low cost implementation fL,r any digital

logic system to be built. For small systems or parts of systems the

reduction of a single function or equation can be accomplished manually

using techniques well described in several available textbooks (e.g.

Phister I and Cauldwell 2 ). For a combinational logic circuit with

fewer than 7 variables the manual processes work quite well. Beyond

7 variables, a'pproximate minimizations are usually accomplished by

partitioning the problem into several smaller problems. Computer

programs have been written implementing the standard methods to solve

problems with more than 7 variables, however historically the memory

requirements and running time has been excessive for more than 12 or

13 variables, forcing the partitioning of larger problems for approxi-

mate solutions. Memory requirements approximately double with each

additional variable, and execution time increases exponentially.

The problem becomes even more complex when there are several

outputs or functions of the input variables. There is no known pro-

cedure to generate a true minimum for this multiple function case.

Good solutions can be found by extending the single function procedures,

however extension processes are not well developed in the literature.

'Hontgomery Phister, Jr., "Logical Design of Digital Computers," John Wiley
& Sons, 1958.

ZSamuel H. Caldwel t o "Switching Circuits and Logical Design," John Wiley 6 	 '
Sons, 1958.
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No known computer programs exist for simplifying multiple equations.

A hardwired telemetry formating technique developed by Martin

Marietta  generates a set of non-reduced equations for translating
r
i

word and frame counter states into 10 bit addresses for use in a

remote multiplexing system. There can be up to 16 input variables

and up to 8 modes or formats, each requiring 10 equations. The

broad applicability of this format generation technique emphasized

the importance of having a computer program available to reduce the

equation set for low cost implementation. The computer program de-

scribed herein is the second step towards the realization of such a

program. The first step was a program for simplifying a single

16 variable equation. This program is based upon the results of the

single equation program. Both programs are general purpose and can

be applied to the entire spectrum of digital logic design, of which

this telemetry formatter is only one significant example.

Basic knowledge of Boolean algebra is necessary for the under-

standing of the algorithm as discussed herein. The following para-

graphs are not intended to substitute for this basic knowledge, but

to serve as an intrc.duction to terminology used later and as a brief

review of basic Boolean algebra, and logic reduction principles. A

simple Boolean equation of four variables is shown as:

F • ABCD + ACD + ACD.

.:	 3R. H. Hardin, "A Multiple Format Telemetry Prograaa er," National Telemetering
''	 Conference, 1967, San Francisco, California.
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This equation is written in a sum-of-products farm. The first term,
r

ABCD, contains all four variables and is therefore a minterm. A

problem with n variables has 2n possible minterms. These minterms

can conceptually be visualized at the vertices (if an n dimensional

1	 cube. Figure I-1 shows a pictorial representation of a 3 variable

cube.. Another more convenient representation of this same cube is

the Karnaugh mp.p shown in Figure I-2. Figure I-3 shows a four

variable Karnaugh map with entries depicting the function given in

the above equation, where X is an entry and the number in parenthesis

indicates the term of the equation from which the entry came. By use

of Boolean algebra or by examining the Karnaugh map, the sample

equation can be reduced to

F - ABCD+AD

The cost of the original equation using the number of gate inputs as

a criterion is a four input gate for the first term, 2 three input

gates for the last Wt . terms and a three input gate fL-r the OR function

for a total cost of 13. The cost of the reduced equation is determined

to be 8 by a similar procedure. This cast criteria is commonly used

in the literature.

The algorithm which is presented is an autc.mated process for ex-

amining the Carnaugh maps of several equations and selecting a good

solution. For computer representation of a Karnaugh map, it is con-

^P	 a

l^
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venient to represent the vertices numerically. Figure I-4 shows a

four variable map with decimal entries c:rresponding to the binary

value represented by each minterm. For example the minterm ABCD is

in binary form, 1010, which is a decimal 10. The equation of the

previous example therefore occupies position 3, 5, 7, 9, and 12 in

the map.

Two important concepts in the minimization process are subcubes

and prime implicants. A subcube is a set of vertices which correspond

to a single term in a sum of prr•ducts equation. In the special case

where all variables are present in the term, the subcube is a vertex.

In Figure I-3 the subcubes present were ABCD, ACD and ACD from the

original equation. Other subcubes for this example are AD, ABCD,

ABCD, ABCD and ABCD. A prime implicant is a subcube which is not

wholly contained in another subcube of the function. For the above

example the only two prime implicants are AD and ABCD. The minimal

solution is a sins of prime implicants, however not all prime implicants

are required. For the example of Figure I-5, the prime implicants are

AC, BCD, !BD, ABC and ACD. The minimal solution is AC + r.BD + ACD.

This solution was obtained by inspection. On a larger problem a

methodical procedure would be required.

When a simultaneous minimization of several equations is desired,

the process changes. The individual equations may not be minimized

in order that terms may be shared between equations and thus achieve
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a net overall minimum cast. Figure I-6 is an example of a two

equation problem. The individual minimal solutions are:

Equation 1 = BD + AB

Equation 2 - ABD + ACD

The cost of equation 1 is 6 and the cost of equation 2 is 8, for a

total of 14. If equation 1 is rewritten as

Equation 1 - BD + ABD

the cast goes up to 7 when considered by itself. When considering

the two equation problems, ABD is a shared term and only needs to be

generated once. The total cost becomes 12. The algorithm presented

attempts to maximize the cost savings possible by term sharing.

In the above examples all vertices were specified as a ONE or

a ZERO, i. e. either included or excluded from the equation. For many

problems there are a set of states (vertices of the n-cube), which the

input variables cannot achieve because of outside constraints. These

vertices are called don't-care vertices and may be assigned as a ONE

or ZERO to simplify the equation. A simple example of such a situation

is a decimal counter using four flip-flops which reset after count

nine. Figure I -7 is a Karnaugh map for decimal counter with the

equation being true for counts 2, 3, 6, 7 and 9. The don't-cares

are shown by 0. Without using the don't cares the reduced equation

is F • AC + ABCD. When the don't-cares are used the equation reduces

iM
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to F - C + AD. The unallowed counts of 10, 11, 13, 14 and 15 are

used as ONES and 12 is ZERO. If several equations were being derived

from this counter, each one can use the don't-cares without regard to

the manner in which the other equations used them.
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II. MULTIPLE EQUATION ALGORITHM

The steps in the total process are to read each equation, includ-

ing don't cares, into the Karnaugh map and generate the set of

prime implicants for each equation. From this set, a merged list

is generated that contains the prime implicants frtm all equations

with duplication eliminated. The generation of prime implicants is

the most costly part of the process in terms of computer running

time. The algorithm for prime implicant generation is presented in

Section III. The remainder of this section discusses the method used

for prime implicant selection for a low cost solution to the multiple

equation problem.

The selection algorithm consists of three phases. The first

phase is a preliminary selection of prime implicants followed by

Phase 2 which eliminates any redundant subeubes present from Phase 1.

Phase 3 examines the equations from Phase 2 looking for the possibility

of replacing several small cubes by one larger cube with a resulting

lower cost.

Phase 	 - The first step in Phase 1 is to select all essential

prime implicants. An essential prime implicant is one which cowers

one or more required vertices which are not covered by any other prime

implicants, When this is accomplished, all remaining vertices are

covered by at least two prime implicants. The selection continues by

generating a comparison key for each remaining prime implicant and se-

lecting the one that has the laritent koy. Th- I•eyf: are revised after each
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selection and again the remaining prime implicant with the largest

key is selected. This process continues until the revised keys become

all zero. The five comparison keys in decending order of importance

are:

1. The total number of ONES covered from all equations.

2. Cube size.

3. The number of ONES covered in this equation.

4. The number of ONES covered in this equation plus the number
of covered vertices contained which have been covered pre-
viously by subcubes.

5. Cos t

KEY-1: This key being in the most significant position forces

the selection of the prime implicant which has the largest contribution

towards satisfying the complete set of equations being reduced.

KEY-2: Because of dcn't care vertices it is possible to have a

small cube cover the same number of vertices as a large cube. This

key furces the selection of the larger cube first, which has a lower

cost. This key is modified to maximum size for thoF,e cubes which occur

in more than one equation. This forces the consideration of terms

which can be shared between equations.

KEY-3: For prime implicants which are equal in Keys 1 and 2,

this key forces selection of the one which is most important for the

equation being reduced.

t	 '
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KEY-4: This key takes the count for Key 3 and adds the count of

vertices covered by previous subcubes. This again aids in selecting

terms which are most important for the equation being reduced and pre-

vents Key 2 from forcing an all subcube solution due to the sharing of

terms from other equations.

KEY-5: This key is the number of gate inputs required to

generate the prime implicant less 1. The 1 is subtracted so that

the maximum cost is 15 which only takes 4 bits in the key word instead

of the 5 bits required for 16. This key selects the smaller prime im-

plicants when all other keys are equal. This can only occur when Key 2

is maximum because the term appears in more than one equation. The

smaller cubes must therefore occur in more equations than the larger

cube if all other keys are equal.

In the event of a tie in the comparison key, the prime implicant

with the largest lower vertex is chosen. If that is also equal, the

one with the smallest upper vertex is selected. This cannot be equal

or the two prime implicants would be the same. This vertex selection

picks the last prime implicants generated in the prime implicant gen-

eration subroutine. This implies less probability of covering vertices

that can be covered by a large number of other terms. Our test problems

have shown this to be a good criterion.

Phase 2_ - Phase 2 examines each equation for the. presence of

redundant cubes and eliminates them. A redundant cube is one whose iM



J

13

vertices are completely covered by other cubes in the equation. These

redundant cubes can occur because of the high priority of shared prime

implicants.

Phase - This phase examines all terms of the merged prime

implicant list which have a non-zero comparison key for a given equation

to determine what terms of the equation could be eliminated if this prime

implicant were used. When terms of the equation can be eliminated, the

implementation cost of using the new term is compared with the cost of the

replaced terms. If a cost savings results the new term and the cost savings

are saved in a list. This continues for all prime implicants and all equa-

tions. When the cost saving analysis is complete the prime implicant with

the largest cost savings is selected and replaces the appropriate terms

in the equations. The cost analysis is re-entered and the high cost savings

term is selected again. When no further cost savings are possible by this

procedure the algorithm terminates and the final solutions for all equations

are printed.

1

iM
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III. PRIME IMPLICANT GENERATION

This section describes the algorithm used for prime implicant

generation. This is described separately since it is a very important

part of the overall minimization process, requiring a significant part

of the computer time for a given problem. The algorithm is based upon

the results of C. C. Carroll 4 . Mr. Carroll developed two mathematical

theorems which form the foundation of the prime implicant generation

algorithm and are described below.

It is clear that for any subcube there is one vertex which has the

largest binary value and one that has the smallest binary value. The

operation "A " between two vertices is defined as a bit by bit AND of
the binary numbers (e.g. 1010 n 0110 - 0010). If two vertices vi

and v2 of an n-cube are such that vl A v2 - vl , then this relationship

is defined as vi<— v2 (e.g. 0101 / , 1101 - 0101; therefore 0101 <--'

1101). This can be thought of to mean vl is contained in v2.

• Theorem 1: If c F Cn , then min (c) -<—max (c)

This theorem states that for any subcube, the minimum vertex

(min (c)) is contained in the maximum vertex (max (c)).

- Theorem 2: v q C if v olE— max (c) and min (c) F v

This theorem states that a vertex v of the n-cube C is an element

of the subcube c if and only if v is contained in the maximum vertex

max (c) and the minimum vertex min (c) is contained in v.

4C. C. Carroll, "A Fast Algorithm for Boolean Function Minimisation," AD680305,
Project Theoiis, Auburn University for Army Missile Command, Huntsville, Alabama,
December 1%8.
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Theorem 2 proves that the minimum and maximutu vertex of a subcube

are sufficient tc completely specify a subcube, and Theorem 1 provides

a simple test to determine if tw(.. vertices determine a subcube. It

is also apparent fr.-!m theorem 1 that the maximum vertices for all sub-

cubes with a common minimum vertex can be generated directly. This can

be done by taking the 0's of min (c) and letting them take on all pos-

sible combinations of 1 1 9 and 0's, keeping the 1's of min (c) fixed.

Similarly all vertices of a subcube can be generated by using theorem 2.

Take all 0's of min (c) which correspond to 1's of max (c) and let them

take on all combinations of 1's and 0's, keeping fixed the 1's and 0's

of max (c) and min (c) which correspond.

An example of subcube generation with a common min (c):

Let min (c)	 01010. the subcubes

are:	 010109	 01010 (the vertex min (c))

01010 9	01011

01010 9	01110

01010 2	01111

01010 9	11010

01010 9	11011

01010 9	11110

01010 9	11111

i
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An example of subcube vertex generation:

'	 Take the subcube 01010, 11011. The vertices of this subcube are:
1

01010

t
01011

11010

11011

The computer implementation of the two generation processes are straight-

forward iterative procedures. For the subcube generator one starts with the

first max (c), which is equal to 2n-1 for the largest subc-ibe. The remaining

max (c)'s are obtained by subtracting binary numbers called RESULT, from

2n-1. RESULT takes on all binary values that have ZEROs in the positions

corresponding to ONES of min (c). The RESULT values are generated in ascen-

ding order which generates subcubes in descending order.

The generation of the vertices of the n -cube starts with min (c) as the

first vertex. The complement of max (c) is bit by bit ORed with this vertex

with a binary one being added to the result. Following the addition, a bit

by bit OR with min (c) is performed followed by a bit by bit AND with max (c).

This process continues until max (c) is reached.

For a given equation the first non zero vertex is used as the min (c)

and all subcubes with that min (c) are generated, with all non zero max (c)s

being flagged in the Karnaugh map. For each flagged max (c) the following

actions are taken.

IM
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a. If MCARR(K) is a DONT CARE state (=2), the index K is saved

in a list (E list) and the E bit counter is incremented.

'

	

	 b. If MCARR(K) is ZERO, the J flag for this max (c) is cleared

and the next max (c) is calculated to form a new (I,J) cube and all

lists generated for the old cube are abandoned.

c. If MCARR(K) is a CARE state (=1), the index K is saved in

a list (L list) and the L ccunt is incremented.

d. If MCARR(K) is a COVERED CARE state (=3), the index K is

saved in the E list and E list count is incremented and the size of

the cube covering the vertex is examined. If the old cube size is

greater than the size of the cube under examination, nothing further

is done. If the cube under examination is larger than the old cube,

the NONCNT counter is incremented.

When a cube has passed all the MCARR(K) examinatio-3 , the cube

is a prime implicant. For each element in the L list (i.e. CARE K's)

the following operations are performed:

a. The size of the current cube is placed in MCARR(L).

b. The prime implicant number is placed in MCARR(L).

c. -The CARE state (m1) is changed to a COVERED CARE state (s3).

d. The J flag is cleared for MCARR(L).

When all max (c)s for a given min (c) are exhausted, the next non

zero min (c) is obtained and the process is continued. When min (c)

exceeds the largest 1 bit set in the Karnaugh map, the process terminates.

I



18

It is important to note that a complete search of the Karnaugh

map is made before the subcube generation process terminates. Our

test problems indicated that this results in improved solutions in

some examples over a termination process which stops generating sub-

cubes when all required vertices have been covered. For large equations

with more than 12 variables and with large numbers of don't-care verti-

ces, a large amount of computational time can be spent searching for

subcubes after all vertices have been covered. The limited experience

with this type of problems indicate very little degradation of solution

if the earlier termination is used. Therefore a control card is used

to allow a user to select between early cutoff and no cutoff, thereby

making his own cost effectiveness decision. The same control card is

used to select input mode. The two input options are equation or ver-

tex number designation.

r
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IV. DATA PREPARATION

The program prepares for the algoLithm by first reading two

control cards. The first consists of two fields as shown in Figure

IV-1. The type field controls the type of equation input, and the

cutoff switch field controle the cutoff switch. The master control

card consists of 1.7 fields as shown in Figure IV-2. The size field

controls the size of Karnaugh Map (MCARR, Figure IV-$ used by the

program. n e remaining fields are used to control the interpretation

of a term of an equation. The bit numbers which are active are in-

serted into the first fields with all other fields being zero. Thus

for a four variable problem the first four fields are filled with 1,

2 3, and 4.

The next card(s) are the cards containing the information about

the DONT CARE (excluded) states. This card consists of six fields as

shown in Figure IV-4. The first field is an end-of-data type indicator

and is used only following all cards which contain data (of which there

may be none). The second field contains the first DONT CARE state ex-

pressed in a decimal number. The third field contains the last DONT

CARE state expressed in a decimal number. The fourth field contains

the multiplier. The fifth field contains the first number to be multi-

plied. The sixth field contains the last number to be multiplied.

The data preparation phase of the program first initializes MCARR

to zero using the size input to the program to determine where to stop.

The program then uses the CONT CARE control cards to set the DONT CAR$



FIGURE IV-1. Type and Cutoff Control Card
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Type of Equation Input - - 0 = Equation form

1 - TO-FROM form

Cutoff Switch - - - - - - 0 = No early cutoff

1 = Early cutoff
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ENTRY 0 ENTRY 1

ENTRY 2 ENTRY 3

ENTRY 4 ENTRY 5

ENTRY 65532 ENTRY 65533

ENTRY 65534 ENTRY 65535

60 BIT
WORDS

22

/}

MCARR TABLE

ENTRY DESCRIPTION

JF	 CS	 MPINUM	 D
	

30 BIT
ENTRY

JF - J FLAG - 1 octal digit - When set indicates that this is a good high
vertex for a cube.

CS - CUBE SIZE - 2 octal digits - Set to the cube size which covers
this vertex.

MPINUM - PRIME IMPLICANT NUMBER - 6 octal digits - This indicates the
number of the cube which covers this
vertex. If ZERO, the vertex has been
covered by more than one cube. Used for
essential prime implicant selection.

D - DESCRIPTOR - 1 octal digit - If set to ZERO indicates bit is ZERO.
If set to ONE indicates bit is ONE.
If set to TWO indicates bit is DONT CARE.
If set to THREE indicates bit was ONE.

and has now been covered; CS and MPINUM
are used only in this state.

FIGURE IV-3, MCARR Table
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state in MCPARR. The program uses the following calculation to de-

termine the bits to set for each DONT CARE control card:

(first state + N) + (multiplier) (Multiplier from + M)

where N - 0 9 1, 2, 3, ... and M - 0 9 1, 2, 3, ... and when (first state

+N) - last state, then M is incremented and (first state + N) is set to

(first state + 0). After (multiplier from)= (multiplier to) the next

card is processed.

At this point in the data preparation phase, MCARR contains no

care states. The program then determines the type of input and if

equation form is indicated, the program then reads an equation term

in the form :

S1 - Ql Q2 Q3' Q4

Ql Q2' Q3

The equation term may be placed in any card column but may not extend

to the next card. There may not be more than one equation term per

card .

The program reads the card and, using the bit numbers input in the

master control card, interprets the term in the following manner. If

all the bits called out in the master control card are contained in

the equation term, then the bit pattern is used as a binary number

pointing to that single care state. If all the bits called out in

the master control card are not used in the term, then the unused bits

are considered as X state bits and are taken through all possible

states and all the resulting states are set into MCARR.

t
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If the type indicated is TO-FROM form, she next card (Figure IV-5)

is read and the appropriate vertices An MCARR are set. The program

then generates all the necessary"prime implicants. The program then

determines by looking at the next card to be read if another equation

is to be reduced.

The program determines the last care (ONE) bit set before it

enters the prime implicant generation routine.

If another equation is to be reduced MCARR is initialized again

and the same DONT CARE cont.ol cards are used to generate the DONT

CARE states. If the card contains **** in the first four columns,

the program terminates.

I=
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A Equation Identifier

FROM - Decimal number which begins a sequence of ONES

TO - Decimal number which ends a sequence of ONES

(NOTE: From and to field may be the same)

43
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FIGURE IV-5, TO - FROM Equation Card
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U - CONCLUSIONS

The computer program that has been developed shows considerable

promise in the minimization of Boolean functions. In particular, it

provides the capability to minimize multiple Boolean functions with up

to 16 variables. In addition, it has the capability to make use of the

forbidden states when the function is for non-binary systems. Tests

showed that the algorithm was indeed very fast, that it did not

require excessive storage capab i lity, and that it found the minimum two

level AND-OR representation in all of the test problems. It may be that

the algorithm will always find the minimum but the proof of this would

require considerable effort. Since the algorithm will always provide a

solution that is close to the minimum, this additional effort would not

be warranted except for purely academic reasons.

The results of this program to date have been the achievement of an

algorithm which is both good, in terms of solution quality, and practical,

in terms of computer time required, for a classical two level AND-OR mini-

mization of multiple functions of a large number of variables. The results

are so good that the necessary steps should be taken to make the algorithm

even more useful. These steps are:

1. Modify the input and output routines to allow a large flexibility

in problem specification formats.
i=
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2. Extend the minimization to a multiple level solution which looks	 R

for common subterms which can be shared. This is partially accom-

plished now, in that terms of one equation which are subterms of

another equation are used. As an example of subterms of a single

equation consider F - ABCDEF + ABCEFG, which can be factored as

F = ABC(DEF + EFG) indicating a sharing of the subterms ABC.

3. Customize the solution to a particular logic family, taking into

account fan-in and fan-out capabilities as well as incorporating

special functions where applicable.

These three steps are not completely separate in that the improved input/

output format is desirable for any useful program and the customization for

a logic family implies multiple level solutions because of fan-in limitations.

The steps 2 and 3 can be taken separately, but could be more efficiently accom-

plished together.
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APPENDIX

This Appendix contains the flow charts for the computer programs

which implement the algorithms discussed in the main body of the report.
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