General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
\qquad

MCR-70-38
(Supplement 2)

COPY NO. \qquad

FINAL REPORT
FOR
SUPPLEMENT TWO
FORMULATION
CF A
TELEMETRY COMPUTER PROGRAM
CONTRACT NAS8-24017

MAY 1971

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

Electronics Research Department Martin Marietta Corporation
P. O. Box 179, Denver, Colorado 80201

FINAL REPORT
FOR
SUPPLEMENT TWO
FORMULATION
OF A
TELEMETRY COMPUTER PROGRAM
CONTRACT NAS8-24017

MAY 1971

Keith H. Hill
Robert 0. Leighou
Duane L. Stainer

Prepared For

NAT TONAL AERONAUTICS AND SPACE ADMINISTRATION
GEORGE C. MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER, ALABAMA 25812

Electronics Research Department Martin Marietta Corporation

P. O. Box 179, Denver, Colorado 80201

FOREWORD

This supplement to the final report is presented in response to Paragraph III. 2 of Exhibit A of Contract NAS8-24017.

CONTENTS

		Page
FOREWORD		ii
contents		iii
ABSTRACT		iv
I.	INTRODUCTIUN	1
II.	mLltiple equation algorithm	10
III.	PRIME IMPLICANT GENERATION	13
IV.	data preparation	10
v	CONCLLSIONS	27
	APPENDİ	$\begin{gathered} \text { A-i through } \\ \text { A-51 } \end{gathered}$
Figures		
I-1	3-Variable n -Cube	4
I-2	3-Variable Karnaugh Map	4
I-3	Karnaugh Map for Sample Equation	4
I-4	Numerical Representation of Vertices	6
I-5	Sample Number 2	6
I-6	Two Equation Problem	8
I-7	Decimal Counter Example	8
IV-1	Type and Cutoff Control Card	20
IV-2	Master Control Card	21
IV-3	MCARR Table	22
IV-4	dont care control card	23
IV-5	TO-FROM Equation Card	26

Abstract

The algorithm described is a fast algorithm for the simultaneous minimization of multiple Boolean functions to a two-level AND-OR form. The major advantages of the algorithm are that it is fast, does not require excessive storage capacity, handles multiple functions, and utilizes unused input states (don't cares) for simplifying the functions. The program as written handles up to lo variables with no limit to the number of functions; however, the resultant total number of prime implicants may not exceed 3073.

As an example of the performance of the algorithm, a problem consisting of ten functions with ten variables took about 50 seconds of CPU time on a CDC 6500 computer. These ten functions were nominal type functions with approximately 50 percent of the vertices filled. A worst case ten function 13 variable problem took 35 minutes. This problem is considered worst case because it contained 6392 don't care vertices out of the 8192 total per function. This large number of don't cares increases the search time for prime implicants and also gives a large number of prime implicants, thereby increasing the time required for final selection.

This algorithm thus provides the capability for minimizing a set of functions of a large number of variables which were previously done poorly by manual methods and could not be done by computer because of excessive time and storage requirements.

I. INTRODUCTION

This paper describes a computerized procedure fur reducing, or simplifying a set of Boolean equations. This is a process which is required for determining a low cost implementation for any digital logic system to be built. For small systems or parts of systems the reduction of a single function or equation can be accomplished manually using techniques well described in several available textbooks (e.g. Phister ${ }^{1}$ and Cauldwel1 ${ }^{2}$). For a combinational logic circuit with fewer than 7 variables the manual processes work quite well. Beyond 7 variables, approximate minimizations are usually accomplished by partitioning the problem into several smaller problems. Computer programs have been written implementing the standard methods to solve problems with more than 7 variables, however historically the memory requirements and running time has been excessive for more than 12 or 13 variables, forcing the partitioning of larger problems for approximate solutions. Memory requirements approximately double with each additional variable, and execution time increases exponentially.

The problem becomes even more complex when there are several outputs or functions of the input variables. There is no known pro: cedure to generate a true minimum for this multiple function case. Good solutions can be found by extending the single function procedures, however extension processes are not well developed in the literature.

[^0]No known computer programs exist for simplifying multiple equations. A hardwired telemetry formating technique developed by Martin Marietta ${ }^{3}$ generates a set of non-reduced equations for translating word and frame counter states into 10 bit addresses for use in a remote multiplexing system. There can be up to 16 input variables and up to 8 modes or formats, each requiring 10 equations. The broad applicability of this format generation technique emphasized the importance of having a computer program available to reduce the equation set for low cost implementation. The computer program described herein is the second step towards the realization of such a program. The first step was a program for simplifying a single 16 variable equation. This program is based upon the results of the single equation program. Both programs are general purpose and can be applied to the entire spectrum of digital logic design, of which this telemetry formatter is only one significant example.

Basic knowledge of Boolean algebra is necessary for the understanding of the algorithm as discussed herein. The following paragraphs are not intended to substitute for this basic knowledge, but to serve as an intriduction to terminology used later and as a brief review of basic Boolean algebra, and logic reduction principles. i simple Boolean equation of four variables is shown as:

$$
F=\overline{A B C D}+\bar{A} C D+\overline{A C D}
$$

[^1]This equation is written in a sum-of-products form. The first term, $A B \overline{C D}$, contains all four variables and is therefure a minterm. A problem with n variables has $2 n$ possible minterms. These minterms can conceptually be visualized at the vertices of an n dimensional cube. Figure I-1 shows a pictorial representation of a 3 variable cube. Ancther more convenient represencation of this same cube is the Karnaugh mep shown in Figure I-2. Figure I-3 shows a four variable Karnaugn map with entries depicting the function given in the above equation, where X is an entry and the number in parenthesis indicates the term of the equation from which the entry came. By use of Boolean algebra or by examining the Karnaugh map, the sample equation can be reduced to

$$
F=A B \overline{C D}+\bar{A} D
$$

The cost of the original equation using the number of gate inputs as a criterion is a four input gate for the first term, 2 three input gates for the last tw. terms and a three input gate fur the OR function for a total cost of 13 . The cost of the reduced equation is determined to be 8 by a similar procedure. This cost criteria is comonly used in the literature.

The algorithm which is presented is an autcmated process for examining the Carnaugh maps of several equations and selecting a good solution. For computer representation of a Karnaugh map, it is con-

FIGURE I-1: 3-Variable n-Cube

FIGURE I-2: 3-Variable Karnaugh Map

venient to represent the vertices numerically. Figure I-4 shows a four variable map with decimal entries cirresponding to the binary value represented by each minterm. For example the minterm $\overline{A B C D}$ is in binary form, 1010, which is a decimal 10. The equation of the previous example therefcre occupies position 3, 5, 7, 9, and 12 in the map.

Two important concepts in the minimization pricess are subcubes and prime implicants. A subcube is a set of vertices which correspond to a single term in a sum of products equation. In the special case where all variables are present in the term, the subcube is a vertex. In Figure $I-3$ the subcubes present were $A B \overline{C D}, \bar{A} C D$ and $\overline{A C D}$ from the original equation. Other subcubes for this example are $\overline{A D}, \overline{A B C D}$, $\bar{A} \overline{B C D}, \overline{A B} C \bar{D}$ and $\bar{A} B C D$. A prime implicant is a subcube which is not wholly contained in another subcube of the function. For the abcue example the oniy two prime Implicants are $\overline{A D}$ and $A B \overline{C D}$. The minimal solution is a sum of prime implicants, however not all pife implicants are required. For the example of Figure I-5, the prime implicants are $\overline{A C}, \bar{B} \bar{C}, \bar{A} B D, \bar{A} B C$ and $\overline{A C D}$. The minimal solution is $\overline{A C}+\bar{A} \bar{B} D+\bar{A} \overline{C D}$. This solution was obtained by inspection. On a larger problem a methodical procedure would be required.

When a simultaneous minimization of several equations is desired, the process changes. The individual equations may not be minimized in order that terms may be shared between equations and thus achieve

FIGURE I-4: Numerical Representation of Vertices

FIGURE I-5: Sample Number 2
a net overall minimum cost. Figure $I-6$ is an example of a two equation problem. The Individual minimal solutions are:

$$
\begin{aligned}
& \text { Equation } 1=\overline{B D}+A \bar{B} \\
& \text { Equation } 2=\overline{A B D}+A C D
\end{aligned}
$$

The cost of equation 1 is 6 and the cost of equation 2 is $8, f(r$ a total of 14. If equation 1 is rewritten as

$$
\text { Equation } 1=\overline{B D}+A \bar{B} D
$$

the cost goes up to 7 when considered by itself. When crinsidering the two equation problems, $A \bar{B} D$ is a shared term and only needs to be generated once. The total cost becomes 12. The algorithm presented attempts to maximize the cost savings possible by term sharing.

In the above examples all vertices were specified as a ONE or a ZERO, i. e. either included or excluded from the equation. For many problems there are a set of states (vertices of the n-cube), which the input variables cannot achieve because of outside constraints. These vertices are called don't-care vertices and may be assigned as a ONE or ZERO to simplify the equation. A simple example of such a situation is a decimal counter using four flip-flops which reset after count nine. Figure I-7 is a Karnaugh map for decimal counter with the equation being true for counts $2,3,6,7$ and 9 . The don't-cares are shown by ϕ. Without using the don't cares the reduced equation is $F=\bar{A} C+\bar{A} \overline{B C D}$. When the don't-cares are used the equation reduces

FIGURE I-6: Two Equation Problem

to $F=C+A D$. The unallowed counts of $10,11,13,14$ and 15 are used as ONES and 12 is ZERO. If several equations were being derived from this cuunter, each one can use the don't-cares without regard to the manner in which the other equations used them.

II. MULTIPLE EQUATION ALGORITHM

The steps in the total process are to read each equation, including don't ca:es, into the Karnaugh map and generate the set of prime implicants for each equation. From this set, a merged list is generated that contains the prime implicants frum all equations with duplication eliminated. The generation of prime implicants is the most costly part of the process in terms of computer running time. The algorithm for prime implicant generation is presented in Section III. The remainder of this section discusses the method used for prime implicant selection for a low cost solution to the multiple equation problem.

The selection algorithm consists of three phases. The first phase is a preliminary selection of prime implicants followed by Phase 2 which eliminates any redundant subcubes present from Phase 1. Phase 3 examines the equations from Phase 2 looking for the possibility of replacing several small cubes by one larger cube with a resulting lower cost.

Phase - The first step in Phase 1 is to select all essential prime implicants. An essential prime implicant is one which covers one or more required vertices which are not covered by any other prime impiicants, When this is accomplished, all remaining vertices ace covered by at least two prime implicants. The selection continues by generating a comparison key for each remaining prime implicant and selecting the one that has the largent key. The leys are revised after each
selection and again the remaining prime implicant with the largest key is selected. This process continues until the revised keys become all zero. The five comparison keys in decending order of importance are:

1. The total number of ONES covered from all equations.
2. Cube size.
3. The number of ONES covered in this equation.
4. The number of ONES covered in this equation plus the number of covered vertices contained which have been covered previously by subcubes.
5. Cost

KEY-1: This key being in the most significant position forces the selection of the prime implicant which has the largest contribution towards satisfying the complete set of equations being reduced.

KEY-2: Because of den't care vertices it is possible to have a small cube cover the same number of vertices as a large cube. This key furces the selection of the larger cube first, which. has a lower cost. This key is modified to maximum size for those cubes which occur in more than one equation. This forces the consideration of terms which can be shared between equations.

KEY-3: For prime implicants which are equal in Reys 1 and 2, this key forces selection of the one which is most important for the equation being reduced.

KEY-4: This key takes the count for Key 3 and adds the count of vertices covered by previous subcubes. This again aids in selecting terms which are most important for the equation being reduced and prevents Key 2 from forcing an all subcube solution due to the sharing of terms from other equations.

KEY-5: This key is the number of gate inputs required to generate the prime implicant less 1 . The 1 is subtracted so that the maximum cost is 15 which only takes 4 bits in the key word instead of the 5 bits required for 16 . This key selects the smaller prime implicants when all other keys are equal. This can only occur when Key 2 is maximum because the term sppears in more than one equation. The smaller cubes must therefore occur in more equations than the larger cube if all other keys are equal.

In the event of a tie in the comparison key, the prime implicant with the largest lower vertex is chosen. If that is also equal, the one with the smallest upper vertex is selected. This cannot be equal or the two prime implicants would be the same. This vertex selection picks the last prime implicants generated in the prime implicant generation subroutine. This implies less probability of covering vertices that can be covered by a large number of other terms. Our test problems have shown this to be a good criterion.

Phase 2-Phase 2 examines each equation for the presence of redundant cubes and eliminates them. A redundant cube is one whose
vertices are completely covered by other cubes in the equation. These redundant cubes can occur because of the high priority of shared prime implicants.

Phase 3 - This phase examines all terms of the merged prime implicant list which have a non-zero comparison key for a given equation to determine what terms of the equation could be eliminated if this prime implicant were used. When terms of the equation can be eliminated, the implementation cost of using the new term is compared with the cost of the replaced terms. If a cost savings results the new term and the cost savings are saved in a list. This continues for all prime implicants and all equations. When the cost saving analysis is complete the prime implicant with the largest cost savings is selected and replaces the appropriate terms in the equations. The cost analysis is re-entered and the high cost savings term is selected again. When no further cost savings are possible by this procedure the algorithm terminates and the final solutions for all equations are printed.

III. PRIME IMPLICANT GENERATION

This section describes the algorithm used for prime implicant generation. This is described separately since it is a very important part of the overall minimization process, requiring a significant part of the computer time for a given problem. The algorithm is based upon the results of C. C. Carroll ${ }^{4}$. Mr. Carroll developed two mathematical theorems which form the foundation of the prime implicant generation algorithm and are described below.

It is clear that for any subcube there is one vertex which has the largest binary value and one that has the smallest binary value. The operation " " between two vertices is defined as a bit by bit AND of the binary numbers (e.g. 1010 ($0110=0010$). If two vertices v_{1} and v_{2} of an n-cube are such that $v_{1} \wedge v_{2}=v_{1}$, then this relationship is defined as $v_{1} \leqslant v_{2}$ (e.g. $0101 \wedge 1101=0101 ;$ therefore $0101 \ll$ 1101). This can be thought of to mean v_{1} is contained in \mathbf{v}_{2}.

- Theorem 1: If $c \in c^{n}$, then min (c) $<\max (c)$.

This theorem states that for any subcube, the minimum vertex
(min (c)) is contained in the maximum vertex (max (c)).

- Theorem 2: $v \underset{\leq}{ }$ if $v<\max (c)$ and min (c) v

This theorem states that vertex v of the n-cube C is an element of the subcube c if and only if v is contained in the maximum vertex $\max (c)$ and the minimim vertex min (c) is contained in v.

[^2]Theorem 2 proves that the minimum and maximum vertex of a subcube are sufficient tc completely specify a subcube, and Theorem 1 provides a simple test to determine if two vertices determine a subcube. It is also apparent from theorem 1 that the maximum vertices for all subcubes with a common minimum vertex can be generated directly. This can be done by taiking the 0 's of min (c) and letting them take on all possible combinations of 1 's and 0 's, keeping the 1 's of min (c) fixed. Similarly all vertices of a subcube can be generated by using theorem 2. Take all 0 's of min (c) which correspond to 1 's of \max (c) and let then take on all combinations of 1 's and 0 's, keeping fixed the 1 's and 0 's of $\max (c)$ and $m i n(c)$ which correspond.

An example of subcube generation with a common min (c):

An example of subcube vertex generation:
Take the subcube 01010 , 11011. The vertices of this subcube are: 01010

01011
11010
11011
The computer implementation of the two generation processes are straightforward iterative procedures. For the subcube generator one starts with the first max (c), which is equal to $2^{n}-1$ for the largest subcibe. The remaining $\max (c)$'s are obtained by subtracting binary numbers called RESULT, from $2^{\text {n }}-1$. RESULT takes on all binary values that have ZEROs in the positions corresponding to ONEs of min (c). The RESULT values are generated in ascending order which generates subcubes in descending order.

The generation of the vertices of the n-cube starts with min (c) as the first vertex. The complement of max (c) is bit by bit ORed with this vertex with a binary one being added to the result. Following the addition, a bit by bit $O R$ with min (c) is performed followed by a bit by bit AND with max (c). This process continues until max (c) is reached.

For aiven equation the first non zero vertex is used as the min (c) and all subcubes with that min (c) are generated, with all non zero max (c)s being flagged in the Karnaugh map. For each flagged max (c) the following actions are taken.
a. If $\operatorname{MCARR}(K)$ is a $\operatorname{DONT} \operatorname{CARE}$ state ($=2$), the index K is saved in a list (E list) and the E bit counter is incremented.
b. If MCARR(K) is ZERO, the J flag for this max (c) is cleared and the next max (c) is calculated to form a new (I, J) cube and all lists generated for the old cube are abandoned.
c. If MCARR(K) is a CARE state ($=1$), the index K is saved in a list (L list) and the L ccunt is incremented.
d. If MCARR(K) is a COVERED CARE state (=3), the index K is saved in the E list and E list count is incremented and the size of the cube covering the vertex is examined. If the old cube size is greater than the size of the cube under examination, nothing further is done. If the cube under examination is larger than the old cube, the NONCNT counter is incremented.

When a cube has passed all the $\operatorname{MCARR}(K)$ examinatio• 3 , the cube is a prime implicant. For each element in the L list (i.e. CARE K's) the following operations are performed:
a. The size of the current cube is placed in $\operatorname{MCARR}(\mathrm{L})$.
b. The prime implicant number is placed in MCARR(L).
c. The CARE state ($=1$) is changed to a COVERED CARE state ($=3$).
d. The J flag is cleared for MCARR(L).

When all max (c)s for a given min (c) are exhausted, the next non zero min (c) is obtained and the process is continued. When min (c) exceeds the largest 1 bit set in the Rarnaugh map, the process terminates.

It is important to note that a complete search of the Karnaugh map is made before the subcube generation process terminates. Our test problems indicated that this results in improved solutions in some examples over a termination process which stops generating subcubes when all required vertices have been covęred. For large equations with more than 12 variables and with large numbers of don't-care vertices, a large amount of computational time can be spent searching for subcubes after all vertices have been covered. The limited experience with this type of problems indicate very little degradation of solutica if the earlier termination is used. Therefore a control card is used to allow a user to select between early cutoff and no cutoff, thereby making his own cost effectiveness decision. The same control card is used to select input mode. The two input options are equation or vertex number designation.

IV. DATA PREPARATION

The program prepares for the algoilthm by first reading two control cards. The first consists of two fields as shorn in Figure IV-1. The type field controls the type of equation input, and the cutoff switch field controle the cutoff switch. The master control card consists of 17 flelds as shown in Figure IV-2. The size field controls the size of Karnaugh Map (MCARR, Figure IV-3) used by the progrsm. The remaining fields are used to control the interpretation of a term of an equation. The bit numbers which are active are inserted into the first fields with all other fields being zero. Thus for a four variable problem the first four fields are filled with 1 , 2 3, and 4.

The next card (s) are the cards containing the information about the DONT CARE (exciuded) states. This card consists of six fields as shown in Figure IV-4. The first field is an end-of-data type indicator and is used only following all cards which contain data (of which there may be none). The second field contains the first DONT CARE state expressed in a decimal number. The third field contains the last DONT CARE state expressed in a decimal number. The fourth field contains the miltiplier. The fifth field contains the first number to be multiplied. The sixth field contains the last number to be multiplied.

The data preparation phase of the program first initializes MCARR to zero using the size input to the program to determine where to stop. The program then uses the CONT CARE control cards to set the DONT CARE

\uparrow| Type of Equation Input $-\quad 0$ | $=$ Equation form |
| ---: | :--- |
| 1 | $=$ TO-FROM form |

	Cutoff Switch - - - - $0=$ No early cutoff 1 = Early cutoff
	-
	00000000000000000000000000009000000000000000000000000002000000000000000000 न (11
	333
	66666666666665666666556665666666666
	888888888883888

000 知00
 111 炎111

 66666666666666666666566666655665666666666
 88888888888888883888

MCARR TABLE

| ENTRY 0 | ENTRY 1 | |
| :--- | :--- | :--- | :--- |
| ENTRY 2 | ENTRY | 3 |
| ENTRY 4 | ENTRY | 5 |
| | | |
| ENTRY 65532 | | |
| ENTRY 65534 | ENTRY | 65533 |

60 BIT
WORDS

ENTRY DESCRIPTION

JF	CS	MPINUM	D

30 BIT ENTRY
$J F-J$ FLAG - 1 octal digit - When aet indicates that this is a good high vertex for a cube.

CS - CUBE SIZE - 2 octal digits - Set to the cube aize which covers this vertex.

MPINUM - PRIME IMPLICANT NUMBER - 6 octal digits - This indicates the number of the cube which covers this vertex. If ZERO, the vertex has been covered by more than one cube. Used for essential prime iuplicant selection.
$\begin{aligned} & \text { D - DESCRIPTOR - } 1 \text { octal digit }- \text { If set to ZERO indicates bit is ZERO. } \\ & \text { If set to ONE indicates bit is ONE. } \\ & \text { If set to TWO indicates bit is DONT CARE. } \\ & \text { If set to THREE indicates bit was ONE. } \\ & \text { and has now been covered CS and MPINUM } \\ & \text { are used only in this state. }\end{aligned}$

FIGURE IV 3, MCARR Table

state in MCARR. The program uses the following calculation to determine the bits to set for each DONT CARE control card:

$$
(\text { first state }+N)+(\text { multiplier }) \text { (Multiplier from }+M)
$$

where $N=0,1,2,3, \ldots$ and $M=0,1,2,3, \ldots$ and when (first state $+N$) = last state, then M is incremented and (first state $+N$) is set to (first state +0). After (multiplier from) $=$ (multiplier to) the next card is processed.

At this point in the data preparation phase, MCARR contains no care states. The program then determines the type of input and if equation form is indicated, the program then reads an equation term in the form :

$$
S 1=Q 1 \text { Q2 Q3' Q4 }
$$

Q1 Q2' Q3
The equation term may be placed in any card column but may not extend to the next card. There may not be more than one equation term per card.

The program reads the card and, using the bit numbers input in the master control card, interprets the term in the following manner. If all the bits called out in the master control card are contained in the equation term, then the bit pattern is used as a binary number pointing to that single care state. If all the bits called out in the master control card are not used in the term, then the unused bits are considered as X state bits and are taken through all possible states and all the resulting states are set into MCARR.

If the type indicated is TO-FROM form, che next card (Figure IV-5) is read and the appropriate vertices In MCARR are set. The program then generates all the necessary prime implicants. The program then determines by looking at :ine next card to be read if another equation is to be reduced.

The program determines the last care (ONE) bit set before it enters the prime implicant generation rcutine.

If another equation is to be reduced MCARR is initialized again and the same DONT CARE control cards are used to generate the DONT CARE states. If the card contains **** in the first four columns, the program terminates.

FIGURE IV-5, TO - FROM Equation Card

v. CONCLUSIONS

The computer program that has been developed shows considerable promise in the minimization of Boolean functions. In particular, it provides the capability to minimize multiple Boolean functions with up to 16 variables. In addition, it has the capability to make use of the forbidden states when the function is for non-binary systems. Tests showed that the algorithm was indeed very fast, that it did not require excessive storage capibility, and that it found the minimum two level AND-OR representation in all of the test problems. It may be that the algorithm will always find the minimum but the proof of this would require considerable effort. Since the algorithm will always provide a solution that is close to the minimum, this additional effort would not be warranted except for purely academic reasons.

The results of this program to date have been the achievement of an algorithm which is both good, in terms of solution quality, and practical, in terms of computer time required, for a classical two level AND-OR minimization of multiple functions of a large number of variables. The results are so good that the necessary steps should be taken to make the algorithm even more useful. These steps are:

1. Modify the input and output routines to allow a large flexibility in problem specification formats.
2. Extend the minimization to multiple level solution which looks for common subterms which can be shared. This is partially accomplished now, in that terms of one equation which are subterms of another equation are used. As an example of subterms of a single equation conside: $F=A \bar{B} C D \overline{E F}+A \bar{B} C E F G$, which can be factored as $F=\overline{A B C}(\overline{D E F}+E F G)$ indicating a sharing of the subterms $A \bar{B} C$.
3. Customize the solution to a particular logic family, taking into account fan-in and fan-out capabilities as well as incorporating special functions where applicable.

These three steps are not completely separate in that the improved input/ output format is desirable for any useful program and the custorization for a logic family implies multiple level solutions because of fan-in limitations. The steps 2 and 3 can be taken separately, but could be more efficiently accomplished together.

APPENDIX

This Appendix contains the flow charts for the computer programs which implement the algorithms discussed in the main body of the report.

APPENDIX CONTENTS

Routine	Page
MAIN	A-1
ALGOR	A-9
SUBGEN	A-12
VERGEN	A-13
PACK	A-14
MAJOR	A-15
DIM1	A-16
SELECT	A-17
DON'T CARE	A-22
ESSEN	A-25
ETERM	A-26
INITCV	A-27
CURVER	A-28
PICK	A-29
SEXIT	A-34
CLEARN	A-35
REDUN	A-36
HILO	A-38
PACRE	A-39
DUM3	A-40
COST	A-41
SUBCUBE	A-47
getsav	A-48
REPLACE	A-49
UNPACR	A-51

A-5

NOTE :
Get MCAR? for this equation from disc

Get addresses of MPI1, MPI2 and E. Get MPINUM

A-30(2) A-32

NOTE:
MPI2 contains prime implicants for this equation

MPIl contains prime implicants for all other equations

A-43

Get first cost entry for table
increment I

NO

$>$ cost of

second
YES
Replace firs
entry with
this one

A-48

[^0]: Montgomery Phister, Jr., "Logical Deaign of Digital Computers," John Wiley \& Sons, 1958. Sons, 1958.

[^1]: 3. $_{\text {R. Hardin, "A Multiple Format Telemetry Programmer," National Telemetering }}$ Conferance, 1967, San Francisco, California.
[^2]: ${ }^{4}$ C. C. Carroll, "A Fast Algorithm for Boolean Function Minimization," AD680305, Proiect Thenis, Auburn University for Army Missile Comend, Hunteville, Alabama, December 1968.

