@ https://ntrs.nasa.gov/search.jsp?R=19710020620 2020-03-11T20:27:45+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

MCR-70-38 '
(Supplement 2) COPY NO,

FINAL REPORT

FOR

SUPPLEMENT TWO

FORMULATION
CF A
TELEMETRY COMPUTER PROGRAM

CONTRACT NAS8-24017

MAY 1971

N71-3009¢g
(ACCESSIONXN‘ﬁBLm, (THg)j
(R -"TPcpsz 08

(NASA CR OR TMX OR AD NUMBER) (CATEGORY)

FACILITY FORM 602

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATICN
GEORGE C, MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

Electronics Research Department
Martin Marietta Corporation
P. 0. Box 179, Denver, Colorado 80201

MCR-70-38
(Supplement 2)

FINAL REPORT
FOR
SUPPLEMENT TWO
FORMULATION
OF A
TELEMETRY COMPUTER PROGRAM

CONTRACT NAS8-24017
MAY 1971

Keith H. Hill
Robert 0. Leighou
Duane L. Starner

N g
Feedet U ZiaoAson.
‘ Robert 0. Leighéu

Program Managér

Prepared For

NAT LONAL AERONAUTICS AND SPACE ADMINISTRATION
GEORGE C, MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER, ALABAMA 25812

Electronics Research Department
Martin Marietta Corporation
P. 0. Box 179, Denver, Colorado 80201

FOREWORD

This supplement to the final report is presented in response

to Paragraph III.2 of Exhibit A of Contract NAS8-24017.

ii

FOREWORD
CONTENTS
ABSTRACT
I.

II.

I1II.

Iv.

Figures
I-1
I-2
I-3
I-4
I-5
I-6
I-7
Iv-1
IV-2
Iv-3
IV-4

IV-5

CONTENTS

INTRODUCTION

MULTIPLE EQUATION ALGORITHM
PRIME IMPLICANT GENERATION
DATA PREPARATION
CONCLUSIONS

APPENDIX

3-Variable n-Cube

3-Variable Karnaugh Map

Karnaugh Map for Sample Equation
Numerical Representation of Vertices
Sample Number 2

Two Equation Problem

Decimal Counter Example

Type and Cutoff Control Card
Master Control Card |

MCARR Table

DONT CARE Control Card

TO-FROM Equation Card

1ii

Page
ii
iii
iv
1
10

13

10

27

A-i through
A-51

20
21
22
23

26

SR

s s O

iv !

ABSTRACT

The algorithm described is a fast algorithm for the simultaneous
minimization of multiple Boolean functions to a two-level AND-OR form.
The major advantages of the algorithm are that it is fast, does not re-
quire excessive storage capacity, handles multiple functions, and utilizes
unused input states (don't cares) for simplifying the functions. The
program as written handles up to 16 variables with no limit to the number
of functions; however, the resultant total number of prime implicants may
not exceed 3073,

As an example of the performance of the algorithm, a problem consisting

s

of ten functions with ten variables took about 50 seconds of CPU time on a
CDC 6500 computer. These ten functions were nominal type functions with
approximately 50 percent of the vertices filled. A worst case ten function
13 variable problem took 35 minutes. This problem is considered worst case
because it contained 6392 don't care vertices out of the 8192 total per
function. This large number of don't cares increases the search time for
prime implicants and also gives a large number of prime implicants, thereby
increasing the time required for final selectionm.

This algorithm thus provides the capability for minimizing a set of
functions of & large number of variables which were previously done poorly
by manual methods and could not‘bendone by computer because of excessive

time and storage requirements.

I. INTRODUCTION

This paper describes a computerized procedure fur reducing, or
simplifying a set of Boolean equations. This is a process which is
required for determining a low cost implementation for ;ny digital
logic system to be built. For small systems or parts of systems the
reduction of a single function or equatién can be accomplished manually
using techniques well described in several available textbooks (e.g.
Phister1 and Cauldwellz). For a combinational logic circuit with
fewer than 7 variables the manual processes work quite well. Beyond
7 variables, a'pproximate minimizations are usuvally accomplished by
partitioning the problem intc several smaller problems. Computer
programs have been written implementing the standard methods to solve
problems with more than 7 variables, however historically the memory
requirements and running time has been excessive for more than 12 or
13 variables, forcing the partitioning of larger problems for approxi-
mate solutions. Memory requirements approximately double with each
additional variable, and execution time increases exponentially.

The problem becomes even more complex when there are several
outputs or functions of the input variables. There 18 no known ﬁgdf
cedure to generate a true minimum for this multiple function case.
Good solutions can be found by extending the single function procedures,

however extension processes are not well developed in the literature.

luontgonery Phister, Jr., "Logical Design of Digital Computers,” John Wiley
& Sons, 1958.

ZSauuel H. Caldwell, "Switching Circuits and Logtcal Design," John Wiley &
Sons, 1958

No known computer programs exist for simplifying multiple equations.

A hardwired telemetry formating technique developed by Martin
Marietta3 generates a set of non-reduced equations for translating
word and frame counter states.into 10 bit addresses for use in a
remote multiplexing system. There can be up to 16 input variables
and up to 8 modes or formats, each requiring 10 equations. The
brcad applicability of this fcrmat generation technique emphasized
the importance of-having a computer program available to reduce the
equation set for low cost implementation. The computer prcgram de-
scribed herein is the second step towards the realization of such a
program. The first step was a program for simplifying a single
16 variab}e equation.‘ This program is based upon the results of the
single equation program. Both programs are general purpose and can
be applied to the entire spectrum of digital logic design, of which
this telemetry formatter is only one significant example.

Basic knowledge of Boolean algebra is necessary fcr the under -
standing of the algorithm as discussed herein. The following para-
graphs are not intended to substitute for this basic knowledge, but
to serve as an intrcduction to terminology used later and as a brief

review of basic Boolean algebra, and logic reductivn principles. a

simple Boolean equation of four variables is shown as:

F = ABCD +ACD + ACD.

3R. H. Herdin, "A Multiple Format Telewmetry Programmer,” National Telemetering
Conference, 1967, San Francisco, California.

This equation is written in a sum-of-products form. The first term,
ABEEL contains all four variables and 1s therefore a minterm. A
problem with n variables has 2n possible minterms. These minterms
can conceptually be visualized at the vertices of an n dimensional
cube. Figure I-1 shows a pictorial representation of a 3 variable
cube. Ancther more convenient representation of this same cube is
the Karnaugh mep shown in Figure 1-2, Figure I-3 shows a four
variable Karnaugh map with entries depicting the function given in
the above equation, where X is an entry and the number in parenthesis
indicates the term of the equation from which the entry came. By use
of Booiean algebra or by examining ﬁhe Karnaugh map, the sample

equation can be reduced to
F = ABCD + AD

The cost of the original equation using the number of gate inputs as
a criterion is a four input gate for the first term, 2 three input
gates for the last tw. terms and a three input gate fur the OR function
for a total cost of 13. The cost of the reduced equation is determined
to be 8 by a similar procedure. This cost criteria is commonly used
in the literature.

The algorithm which is presented is an autcmated process for ex-
amining the Carnaugh maps of several equations and selecting a good

solution. For computer representation of a Karnaugh map, it is con-

ABC ABC

ABC C
ABC ABC
ABC ABC
FIGURE I-1: 3-Variable n-Cube
A
A
{ A
ABC ABC ABC ABC
ABC ABC ABC ABC C
Y
B
FIGURE I-2: 3-Variable Karnaugh Map
A
A
r N
X(1)
X(3) X(3)
X(2) X(2)
‘ C
B

FIGURE I-3: Karnaugh Msp for Sample Equation

G o At N SRR

venient to represent the vertices numerically. Figure I-4 shows a
four variable map with decimal entries ccrresponding to the binary
value represented by each minterm. For example the minterm ABCD is
in binary form, 1010, which is a decimal 10. The equation of the
previous example therefcre occupies position 3, 5, 7, 9, and 12 in
the map.

Two important concepts in the minimization prucess are subcubes
and prime implicants. A subcube is a set of vertices which correspond
to a single term in a sum of prrducts equation. 1In the special case
where all variables are present in the term, the subcube is a vertex.
In Figure I-3 the subcubes present were ABEB} ACD and ACD from the
original equation. Other subcubes for this example are KD, ZEEb,
KﬁEb, ABCD and ABCD, A prime implicant is a subcube which is not
wholly contained in another subcube of the function. For the abcve
example the oniy two prime Implicants are AD and ABCD. The minimal
solution is a sum of prime implicants, however not all prime implicants
are required. For the example of Figure I-5, the prime implicants are
AC, BCD, ABD, ABC and ACD. The minimal solution is AC + GBD + ACD.
This soluticn was obtained by inspection. On a larger problem a
methodical procedure would be required.

When a simultaneous minimization of several equations is desired,
the process changes. The individual equations may not be minimized

in order that terms may be shared between equations and thus achieve

PRERETRRA R R

ol 6 S ey + e

Y
B

FIGURE I-4: Numerical Representation of Vertices

<

FIGURE I-5: Sample Number 2

a net overall minimum cost. Figure I-6 is an example of a two

equation prcblem., The Individual minimal solutions are:

Equation 1 = BD + AB

Equation 2 = ABD + ACD
The cost of equation 1 is 6 and the cost of equation 2 is 8, fcr a

total of 14. If equation 1 is rewritten as

Equation 1 = BD + ABD

the cost goes up to 7 when considered by itself. When ccnsidering
the two equation problems, Aib is a shared term and only needs to be
generated once. The total cost becomes 12, The algorithm presented
attempts to maximize the cost savings possible by term sharing.

In the above examples all vertices were specified as a ONE or
a 2ERO, i. e. either included or excluded from the equation. For many
prcblems there are a set of states (vertices of the n-cube), which the
input variables cannot achieve because cf outside constraints. These
vertices are called don't-care vertices and may be assigned as a ONE
or ZERO to simplify the equation. A simple example of such a situation
is a decimal counter using four flip-flops which reset after count
nine. Figure I-7 is a Karnaugh map for decimal counter with the
equation being true for counts 2, 3, 6, 7 and 9. The don't-cares
are shown by @§. Without uéing the don't cares the reduced equation

is F = AC +-A§Eb. When the don't-cares are used the equation reduces

S A

A A
A A
{ -\ r
X X X
X X D X
X
B
\ 7 . 7
Y Y
C C
Equation 1 Equation 2

FIGURE I-6: Two Equation Problem

FIGURE 1I-7: Decimal Counter Example

to F=C+ AD. The unallowed ccunts of 10, 11, 13, 14 and 15 are
used as ONES and 12 is ZERO. If several equations were being derived

from this cuunter, each one can use the don't-cares without regard to

the manner in which the other equations used them.

o e o st e

i RN e b e

S > U RREL et

10

II. MULTIPLE EQUATION ALGORITHM

The steps in the total prccess are to read each equation, includ-
ing don't cares, into the Karnaugh map and generate the set of
prime implicants for each equation. From this set, a merged list
is generated that contains the prime implicants frcm all equations
with duplication eliminated. The generation of prime implicants is
the most costly part of the process in terms of computer running
time. The algorithm for prime implicant generation is presented in
Section III. The remainder of this section discusses the method used
for prime implicant selection for a low cost solution to the multiple
equation problem.

The selection algorithm consists of three phases, The first
phase 1s a preliminary selection of prime implicants fcllowed by
Phase 2 which eliminates any redundant subcubes present from Phase 1.
Phase 3 examines the equations from Phase 2 looking for the possibility
of replacing several small cubes by one larger cube with a resulting
lower cost.

-

Phase 1 - The first step in Phase 1 is to select all essential
prime impiicants. An essential prime implicant is one which covers
one>or more required vertices which are not covered by any other prime
implicants, When this is accomplished, all remaining vertices are
covered by at least two prime implicants. The selection continues by

generating a comparison key for each remaining prime implicant and se-

lecting the one that has the largest key.,

The eyc are revised after each

11

selection and again the remaining prime implicant with the largest

key is selected. This process continues until the revised keys become
all zero. The five comparison keys in decending order of importance
are:

1. The total number of ONES covered from all equationms.

2. Cube size.

3. The number of ONES covered in this equation.

4. The number of ONES covered in this equation plus the number
of covered vertices contained which have been ccvered pre-
viously by subcubes.

5. Cost

KEY-1: This key being in the most significant position forces
the selection of the prime implicant which has the largest contribution
towards satisfying the complete set of equations being reduced.

KEY-2: Because of dcn't care vertices it is possible to have a
small cube ccver the same number of vertices as a large cube. This
key furces the selection of the larger cube first, whicl has a lower
cost. This key is modified to maximum size for those cubes which occur
in more than onz equation. This forces the consideration of terms
which can be shared between equations.

KEY;3: For prime implicants which are equal in Keys 1 and 2,

this key forces selection of the one which is most important for the

equation being reduced.

12

KEY-4: This key takes the count for Key 3 and adds the count of
vertices covered by previous subcubes. This again aids in selecting
terms which are most important for the equation being reduced and pre-
vents Key 2 from forcing an all subcube solution due to the sharing of

terms from other equations.

KEY-5: This key is the number of gate inputs required to
generate the prime implicant less 1. The 1 is subtracted so that
the maximum cost is 15 which only takes 4 bits in the key word instead
of the 5 bits required for 16. This key selects the smaller prime im-
plicants when all other keys are equal. This can only occur when Key 2
i{s maximum because the term zppears in more than one equation. The
smaller cubes must therefore occur in more equations than the larger :
cube if all other keys are equal.

In the event of a tie in the comparison key, the prime implicant
with the largest lower vertex is chosen. If that is also equal, the 3
one with the smallest upper vertex 1is selected. This cannot be equal

or the two prime implicants would be the same. This vertex selection

picks the last prime implicants generated in the prime implicant gen-
eration subroutine. This implies less probability of covering vertices
that can be covered by a large number of other terms. Our test problems
have shown this to be a good criterion.

Phase 2 - Phase 2 examines each equation for the presence of

redundant cubes and eliminates them. A redundant cube is one whose

13

vertices are completely covered by other cubes in the equation. These
redundant cubes can occur because of the high priority of shared prime
implicants.

Phase 3 - This phase examines all terms of the merged prime
implicant 1list which have a non-zero comparison key for a given equation
to determine what terms of the equation could be eliminated if this prime
implicant were used. When terms of the equation can be eliminated, the
implementation cost of using the new term is compared with the cost of the
replaced terms, If a cost savings results the new term and the cost savings
are saved in a list. This continues for all prime implicants and all equa-
tions. When the cost saving anslysis is complete the prime implicant with
the largest cost savings is selected and replaces the appropriate terms
in the equations. The cost analysis is re-entered and the high cost savings
term is selected again. When no further cost savings are possible by this
procedure the algorithm terminates and the final solutions for all equations

are printed.

14

III. PRIME IMPLICANT GENERATION

This section describes the algorithm used for prime implicant
generation. This is described separately since it is a very important
part of the overall minimization process, requiring a significant part
of the computer time for a given problem. The algorithm is based upon
the results of C. C. Carrolla. Mr. Carroll developed two mathematical
theorems which form the foundation of the prime implicant generation
algorithm and are described below.

It 1s clear that for any subcube there is one vertex which has the
largest binary value and one that has the smallest binary value. The

operation "/\ " between two vertices is defined as a bit by bit AND of

the binsry numbers (e.g. 1010 /\ 0110 = 0010). If two vertices v,
and vy of an n-cube are such that "1/\ Vo = V), then this relationship

is defined as vy« v, (e.g. 0101 /\ 1101 = 0101; therefore 0101 <—

1101). This can be thought of to mean v; is contained in vy
- Theorem 1: If ¢ € C", then min (c) «<<—max (c).
This theorem states that for any subcube, the minimum vertex

(min (c)) is contained in the maximum vertex (max (c)).

RABRI B M A s ioncesdos

- Theorem 2: v ¢C if v «€—max (c) and min (c) &= v
This theorem states that a vertex v of the n-cube C is an element
of the subcube c if and only if v is contained in the maximum vertex

max (c) and the minimum vertex min (c) is contained in v.

‘C. C. Carroll, "A Fast Algétith- for Boolean Function Minimization," AD68030S,

Themis, Auburn University for Army Missile Command, Huntsville, Alabama,
Decembar 1968, ' -

15

Theorem 2 proves that the minimum and maximum vertex of a subcube
are sufficient tc completely specify a subcube, and Theorem 1 provides
a simple test to determine if tw: vertices determine a subcube. It
is also apparent fr:m theorem 1 that the maximum vertices for all sub-
cubes with a common minimum vertex can be generated directly. This can
be done by taking the 0's of min (c¢) and letting them take on all pos-
sible combinations of 1's and 0's, keeping the 1's of min (c) fixed.
Similarly all vertices of a subcube can be generated by using theorem 2.
Take all 0's of min (c) which correspond to 1's of max (c¢) and let them
take on all combinations of 1's and O's, keeping fixed the 1's and 0's
of max (c¢c) and min (¢) which correspond.

An example of subcube generation with a common min (c¢):

Let min (¢) = 01010, the subcubes
are: 01010, 01010 (the vertex min (c))
01010, 01011
01010, 01110
01010, 01111
01010, 11010
01010, 11011
01010, 11110
01010, 11111

s ol s

'WM-H;%%?:? A R i

16

An example of subcube vertex generation:
Take the subcube 01010, 11011. The vertices of this subcube are:
01010
01011
11010
11011

The computer implementation of the two generation processes are straight-
forward iterative procedures. For the subcube generator one starts with the
first max (c), which is equal to 2%-1 for the largest subcube. The remaining
max (c)'s are obtained by subtracting binary numbers called RESULT, from
2"-1. RESULT takes on all binary values that have ZEROs in the positions
corresponding to ONEs of min (¢). The RESULT values are generated in ascen-
ding order which generates subcubes in descending order.

The generation of the vertices of the n-cube starts with min (c) as the
first vertex. The complement of max (c) is bit by bit ORed with this vertex
with a binary one being added to the result. Following the addition, a bit
by bit OR with min (c) is performed followed by a bit by bit AND with max (c).
This process continues until max (c) is reached.

For a given equation the first non zero vertex is used as the min (c)
and all subcubes with that min (c) are generated, with all non zero max (c)s
being flagged in the Karnaugh map. For each flagged max (c) the following

actions are taken.

17

a. If MCARR(K) is a DONT CARE state (=2), the index K is saved
in a list (E 1list) and the E bit counter is incremented.

b. If MCARR(K) is ZERO, the 3 flag for this max (c¢) 1s cleared
and the next max (c) is calculated to form a new (I,J) cube and all
lists generated for the old cube are abandoned.

c¢. If MCARR(K) is a CARE state (=1), the index K is saved in
a list (L list) and the L ccunt is incremented.

d. If MCARR(K) is a COVERED CARE state (=3), the index K is
saved in the E list and E 1ist count is incremented and the size of
the cube covering the vertex is examined. If the old cube size is
greater than the size of the cube under examination, nothing further
is done. If the cube under examination is larger than the old cube,
the NONCNT counter is incremented.

When a cube has passed all the MCARR(K) examinatio-s, the cube
is a prime implicant. Por each element in the L list (i.e. CARE K's)
the following operations are performed:

a. The size of the current cube is placed in MCARR(L).

b. The prime implicant number is placed in MCARR(L).

c. -The CARE state (=1) i{s changed to a COVERED CARE state (=3).

d. The J flag is cleared for MCARR(L).

When all max (c)s for a given min (c) are exhausted, the next non

zero min (c) 1is obtained and the process is continued. When min (c)

exceeds the largest 1 bit set in the Karnaugh map, the process terminates.

18

It is important te note that a complete search of the Karnaugh
map is made before the subcube generation process terminates. Our
test problems indicated that this results in improved solutions in
some examples over a termination process which stops generating sub-
cubes when all required vertices have been cov%red. For large equations
with more than 12 variables and with large numbers of don't-care verti-
ces, a large amount of computational time can be spent searching for
subcubes after all vertices have been covered. The limited experience
with this type of problems indicate very little degradation of soluticn
if the earlier termination is used. Therefore a control card is used
to allow a user to select between early cutoff and no cutoff, thereby
making his own cost effectiveness decision. The same control card is
used to select input mode. The two input options are equation or ver-

tex number designation.

i R T e e

19

1V. DATA PREPARATION

The program prepares for the algoiithm by first reading two
control cards. The first consists of two fields as shown in Figure
IV-1. The type field controls the type of equation input, and the
cutoff switch field controle the cutoff switch. The master control
card consists of 17 fields as shown in Figure IV-2. The size field
controls the size of Karnaugh Map (MCARR, Figure IV-3) used by the
program. The remaining fields are used to control the interpretation
of a term of an equation., The bit numbers which are active are in-
serted into the first fields with all other fields being zero. Thus

for a four variable problem the first four fields are filled with 1,

PP

2 3, and 4.

The next card(s) are the cards containing the information about
the DONT CARE (exciuded) states. This card consists of six fields as
shown in Figure IV-4. The first field is an end-of-data type indicator
and is used only fqllawing all cards which contain data (of which there
may be none). The second field contains the first DONT CARE state ex-
pressed in a decimal number. The third field contains the last DONT
CARE state expressed in a decimal number. The fourth field contains i
the m. ltiplier. The fifth field contains the first number to be multi-
plied. The sixth field contains the last number to be multiplied.

The data preparation phase of the program first initializes MCARR
to zero using the size input to the program to determine where to stop.

The program then uses the CONT CARE control cards to set the DONT CARE

20

A\ Type of Equation Input - - 0 = Equation form
1 = TO-FROM form
Cutoff Switch - - - - - - 0 = No early cutoff
N
1 = Early cutoff
o] '
X
3
S
S
3
x .
OOOEO 000000000000000000000060000002000000000u00000000000000002000000000000000008
123K TOHIWNRBUBKINISDNNDHNZN 290NN ITWIN0 4243484566 4742485051 5253545556 57585960 616263 CACISE I G062 2D " 12 13X IS N W T8 80
lllﬁl (RR AR AR R R R R RERRRRRRERRR R R
X

222%22¢22222222222222222222222222222222222
333233
444&‘4441444
55
655556 6666E6666666666606066R566606666666666666666666666666666666666666665666666666
177571 1T 0100010001001 100 0000000200 000700109120017711070701111111171110
saspesposocanagiiannooeaasconaotasanneaasBoconoss8 R0 80880808000888088808¢88208888
399K98[89999999999899y993999999999399999999999999999999999999999999939999999993989

23RN SN IBHNERTNNIBDNONNBADANNANNNUIIBTNNROQBUBSHOHED52845BE AN ROMAHRIHNNNNINRNINSET S
B’y yhe

X

FIGURE 1V-1, Type and Cutoff Control Card

R e 7 e B 0

3 SIZE OF MCARR TABLE

PR
] -l 21
-l &
£ O g
> @& 0
- 1~
L I
T 0
U vl @
O | &
g g oy
QO M .
£ 0O D>y
=009
& 0 e FY]
wl O W g
L LY
O 0.Qan
0 O3y
] L B
(o3 2 0
ﬁ H R Sn
M ol W
COBOOROOENO[ICRO0E0O0NWO PO FO0K00 KOO goo0o0000000000000000000000080
W RN NIE2 2 @ 26 S22 P2 22 [35 P 38 e 6 SFa 1 6 0 s se SSSESISIIEOEIE2EICACSHECICEEINN NN TIMNTE I NI
Tigrigrigigiigigipg 1B AREARE 1RE IR ARRRRRRRRRRRRERRRRRERRRRRER!
2202232222022 822822522822%822322%22 222222222222272222222222222
J3NIIJIITIJIIPIIPIIPIIPIINIIJIINIL 3333333333333333333331333333
GARUABLAAARIIRIIRIIBAIRILARIIRAIRL S Q44448044880 088004480444448414
SN S SRS S SRS SRS S G SIS RS SWSS PSS 5555555555559555595555555555
GOREEBOCRIEPE6 N6 PO REOPOEJ/OOPE6PE 6 66666666665 6666666066666C666
MI@IIRII @ IRI IR I@II QI IQI TG IR II@ITIQIAIITIT00077001070073077111171111
SRRt pIRtIpiepIsRttpotmocpoysssengneasegsasecesesssscsscss
SIS EIIRIS RIS IR BIINoINII NI LI NI999599999999993998999999489
a2 i 28815503 5 jw o e ulle o R se 545556 57 50 59606162 63 Gs 6366870830 i 2 13 3 T B TT I 1IN0

FIGURE 1V-2, Master Control Cazd

r———

[N PI —,

T R i

22

MCARR TABLE
i
:
ENTRY 0O ENTRY 1 60 BIT 3
WORDS
ENTRY 2 ENTRY 3 é
ENTRY 4 ENTRY 5
ENTRY 65532 ENTRY 65533
ENTRY 65534 ENTRY 65535
ENTRY DESCRIPTION
JF | cs MPINUM D l 30 BIT

ENTRY

JF = J FLAG - 1 octal digit - When set indicates that this is a good high
vertex for a cube,

CS = CUBE SIZE - 2 octal digits -~ Set to the cube size which covers

this vertex.

MPINUM - PRIME IMPLICANT NUMBER ~ 6 octal digits - This indicates the
number of the cube which covers this
vertex., If ZERO, the vertex has been
covered by more than one cube. Used for
essential prime implicant selection.

D -« DESCRIFTOR = 1 octal digit - If set
If set

If set

If set

and

are

FIGURE IV~3, MCARR Table

(3 _J]

to ZERO indicates bit is ZERO.
to ONE indicates bit {s ONE. 3
to TWO indicates bit is DONT CARE.
to THREE indicates bit was ONE,
has now been covered CS and MPINUM
used only in this state.

P3®) T1013u0) AYVD INOA ‘H=-AI TA(DII

QOGLAL L/ SLS v £ 2 11 QLEIES(IDISINITITIN NS M IS SENHISIE SO LRSI ND DY

6E66666566666066666666666666668666666666
R R R R R R R AR R R R R R AR R R R R R AR RN RRRRRRRRARARAL)
LrerecrerreereerereeeeeeoeeneeeeeLLet
9999999999999999999599999999999999999999 99999mMNIIIIIENII39
§666666666666666666666666666665666666666¢6 _ §666S SCOSKEESGSS
AR AR AR AAAAARARAARAARAAARARARAAAAAAAAAA ARRAL (AR AN (2222, ARA
ceeecececeeceeccecceeececeecceeececcccesecjeccee iy . eeLee ceeepNecee
rtririreererree et eee ZZZZ" as XXX XA rroTgEpetee

LR SR

('Y 1}
11123 1.4
 ERRRL {.URRRR
LLLLLgBLLLLLINBLLLL

RN NN RN RN N NN AN RN R R NN N AN R N NN N WRENE - FUNNE (AR
QOGO LLOLSLOLCIZELLOLGIRIIIBNSIVILILIISRIGSISLSNSSHISIS SNV NNV e v [(R 3R] et rel
000000000000000000000000600000000000000000p0o0o00} oo0ooEePo0oo o000
O], 39F1dF3 1NN V
woxi I9FTAIITON \l,
I9FTATITON
\
93838 9aBD 3 ,UOP ISB] BIIWIFPUT 3IVIS 3ISW] V

®IVp FYVD INOQ 38IFF 89IBOFpUI = 93®IS 3IBATI v

pesseooad ueaq swYy pawd ISV BY3 3IWYJ "BIIBIFPUI xxxx

1%

24

state in MCARR. The program uses the following calculaﬁion to de-
termine the bits to set for each DONT CARE control card:

(first state + N) + (multiplier) (Multiplier from + M)
where N=0, 1, 2, 3, ... and M=0, 1, 2, 3, ... and when (first state
+N) = last state, then M is incremented and (first state + N) is set to
(first state + 0). After (multiplier from)= (multiplier to) the next
card 1is processed.

At this point in the data preparation phase, MCARR contains no
care states. The program then determines the type of input and if
equation form is indicated, the program then reads an equation term
in the form :

S1 = Ql Q2 Q3' Q4
Ql Q2' Q3
The equation term may be placed in any card column but may not extend
to the next card. There may not be more than one equation term per
card.

The program reads the card and, using the bit numbers input in the
master control card, interprets the term in the following manner. If
all the bits called out in the master control card are contained in
the equation term, then the bit pattern 1is used as a binary number
pointing to that single care state. If all the bits called out in
the master control card are not used in the term, then the unused bits
are considered as X state bits and are taken through all possible

states and all the resulting states are set into MCARR.

bl e

Vel o7 < o

N

25

If the type indicated is TO-FROM formf che next card (Figure IV-5)
is read and the appropriate verticij//{h MCARR are set. The program
then generates all the necessa;y“frime implicants. The program then
determines by looking at :hebnext card to be read if another equation
is to be reduced.

The program determines the last care (ONE) bit set before it
enters the prime implicant generation rcutine.

If another equation is to be reduced MCARR is initialized again
and the same DONT CARE control cards are used to generate the DONT

CARE states. If the card contains **** jin the first four columns,

the program terminates.

26

A Equation Identifier
/N FROM - Decimal number which begins a sequence of ONES
TO - Decimal number which ends a sequence of ONES

A

(NOTE: From and to field may be the same)

~ (o1 o]

i i

% %

ttel %

%X %%

K EE
06005‘00000;*00000'0000000.ﬂl000000!0"!.000000000000000000008.00.00000000000000
1234 §1|omn gununn WNRDNZ WU NI NI ININE0 02 Q44560 (2695051 51I ST EIRBUBSKITHUBN I PNINTNT NN
lllI§§l||!IxxlllllllllllllllllllIlllllllllllllllllIllllllllllllllllllllllllil!ll
2222§§22222322
J333§§3333325333
44¢4§§44444§;44444 SAAA44444040484044484884444044840404804408008200040004440804410444
555SEES55552;555
655S;és65665;5685885556656566556656556566868685665656565866586566685686666565665
77175571777 31177777717777171771777717171777777777771717711717171717111777777777
li!&iglllll 8!!80!3!!0!888!88888!88!..!!IBlllllll!lllllllllllttlllilllltlllllll
9999%%89999 99999/59¥899999999995399999999999999999999999999093999969999993989899
RERT RN | KRl A e e L LA

FIGURE IV-5, TO - FROM Equation Card

27

V. CONCLUSIONS

The computer program that has been developed shows considerable
promise in the minimization of Boolean functions. In particular, it
provides the capability to minimize multiple Boolean functions with up
to 16 variables. In addition, it has the capability to make use of the
forbidden states when the function is for non-binary systems. Tests
showed that the algorithm was indeed very fast, that it did not
require excessive storage capability, and that it found the minimum two
level AND-OR representation in all of the test problems. It may be that
the algorithm will always find the minimum but the proof of this would
require considerable effort. Since the algorithm will always provide a
solution that is close to the minimum, this additional effort would not
be warranted except for purely academic reasons.

The results of this program to date have been the achievement of an
algorithm which is both good, in terms of solution quality, and practical,
in terms of computef time required, for a classical two level AND-OR mini-
mization of multiple functions of a large number of variables. The results
are so good that the necessary steps should be taken to make the algorithm
even more useful. These steps are:

1. Modify the input and output routines to allow a large flexibility

in problem specification formats.

28

2. Extend the minimization to a multiple level solution which looks
for common subterms which can be shared. This is partially accom-
plished now, in that terms of one equation which are subterms of
another equation are used. As an example of subterms of a single
equation consider F = AEbDE§'+’A§bEFG, which can be factored as
F= Aib(DE§'+ EFG) indicating a sharing of the subterms ABC.

3. Customize the solution to a particular logic family, taking into
account fan-in and fan-out capabilities as well as incorporating
special functions where applicable.

These three steps are not completely separate in that the improved input/

output format is desir?ble for any useful program and the customization for
a logic family implies multiple level solutions because of fan-in limitationms.

The steps 2 and 3 can be taken separately, but could be more efficiently accom-

plished together.

U

e

iz 28

Wm‘&m%w i it vt

APPENDIX

This Appendix contains the flow charts for the computer programs

which implement the algorithms discussed in the main body of the report.

Routine

MAIN
ALGOR
SUBGEN
VERGEN
PACK
MAJOR
DUM1

SELECT

DON'T CARE

ESSEN
ETERM
INITCV
CURVER
PICK
SEXIT
CLEARN
REDUN
HILO
PACKE
DUM3
COST
SUBCUBE
GETSAV
REPLACE

UNPACK

APPENDIX CONTENTS

Page
A-1
A-9
A-12
A-13
A-14
A-15
A-16
A-17
A-22
A-25
A-26
A-27
A-28
A-29
A-34
A-35
A-36
A-38
A-39
A-40
A-41
A-47
A-48
A-49
A-51

A-ii

oA

Wmmwww% e TR e 1

R e i 4 ekt AT T A

A-1

and CUTOFF
SWITCH contro
card

)

Read master
control
card

v

Read all
DONT CARE
control cards

E A)a-2

Initialize
array MCARR
to ZERO

/

Maximum of 50 cards

Set to 2 all

vertices
specif%SdTin
N
CAﬁ%lcontrol
cards
\ No Read next
of 1nput Cand “E
equations) r
l Yes
Read next Yes FiniShig
Card \With all
] equations
NO
Finishe
with all
equations \V e
NO A-3 Finished NO | all vertices
with this sPecified by
Set to ONE TOFROM card
all vertices F:n;shed equation
specified by with this Yes
this equation equation
term J

A-2

A-1

Write MCARR
on disc

File 1

If cutoff switch ALGOR LO VERTEX in
wai set, ALGOR Generate prime one word
;1 1 terminate implicants for / HI VERTEX in
when all ONE bits his equation second word
have been set

for this
equation

RS

s RS

Write prime
implicants

Write end
of file

on File
1 & 2

Rewind
files

1 &2

Read next
equations
prime

Place all new
prime implicants

S e

in merged

‘prime implicant
list

Finished NO
with all
equa:ions /

Yes

ki art e it

Print merged
prime
implicant

list

Rewind
File 2

ISR = S A

A-3

A-14
/ PACK \

Pack merged
prime implicant

list area two

words to one

Read MCARR
for this
equation

(File 1)

A-15

/ MAJOK
Create major
comparison key
for each merged
prime
1mp11cant

Finished wiZ\ No
all equ§t1?2:/"

Yes

Rewind File
1

Nl

A-4

i vt e aia i

s s sk e ety £ i T o T 432 TR Loy i

A=4
A-6

Read MCARR
for this
equation

(File 1)

A-16

[50%1\

Pass extra
parameters
required
by SELECT

A-17
SELECT \

Create
comparison keys
for use in
selecting
prime
implicants

Write prime
implicants
and comparison
‘keys on

File 3

Read MCARR
for this
equation

A-5

A=-5
A=-29
/ PICK \
Pick prime

implicant with
argest comparison

key and continu
until equation

A-35
CLEARN

Clear subcube
flag from prime
implicant 1ist

e
)

Eliminate
redundant cubes

Finished with joo A-5
281l equations ¥

Rewind File

A-%
A-8(2)

Rewind File
2

Read
selected
prime
mplicants

File 3

Get list of
candidate

(selected) prime

implicants

to E

Read File
2 for all
equations

but this
one

A\ 4

Create a‘list of
prime implicants
used in other
equations

\ Read picked/
prime implicants

Pass extra
parameters

for cost
routine

Rk ik el v e -

e,

e

et vt

A-41

Z COST &
Determine if

any of the selected
\but: not picked}
PIs are cheaper
than picked PIs.
Build 1ist/

Finished with\ No
all PlIs ‘J/r

“ll}es

Any cost \No
savings‘J/f

Get maximum
cost saving
entry from
11st

Read 1in
equation

with savings

with cheaper
cube(s)

Write out
new '
equation

(File 2)

A-7

npack equation
prime implicants
for all
equations
Xequ&tion]
prime

implicants

A-8

Wil AR AW kv | AN S

o sy, . S FY v N N . .qu.‘ﬁb PN e O« S
e 5 s R b i B S S

"Get .oxt NON-ZERO
vertex (I) not
greater than last

A-9
A-11

Is cutoff
NO f switch set and

all ONEs 1in the

ONE bit set array covered
Yes
s
I Dlast ONE |Yes W

bit_set?

NO
/ A-12
/ _SUBGEN__ \
Calculate all
upper vertices
(J) for this I:
Flag NON-ZERO

vertices

» X

Get largest
flagged J,

Icalculate and save

current cube 3124

A-10

A-13

Calculate next
vertex (K) of

ubcube (I, J)

Is

i Yes
MCARR(K) = 2 ?

Save K {n E LIST

f;flncrement E COUNT

Clear J Flag in

—>1 this MCARR(J)

A-1]1

> it i v

P grioy - R

.“fs;,;m g g

Tt Bttt 1,

s S bl 5

. A-10
1 A=9
¢

COUNT

L Is Save K in L LIST
'f MCARR(K) = 1 % Increment L

: I NO

Save K in E LIST Is Save K in E LIST

NOf covered i YES
Increment E COUNT for ver'te; z<e ——>-

oy 2
ggfrentcubegige.

Increment NONCNT

|

=2
Is
2t) O%

YES

Is
L (OUNT = 0 ?

No

Set all MCARR(L)

to: 1) current
cube size, 2)

MPINUM, 3)THREE
—

(lear J Flag
from all MCARR(L)

inished with
all L's?

PUBEENINDRSORIRRSSSSSSRRSS A e

No

YES

A-11

A-11

Is
E COUNT = 0 ?

Yes

Is ‘\\\
Yes
MCARR(E) = 2 ?
I No

Clear J Flag Clear J Flag
in MCARR(E)

\.

in MCARR(E)

3
i
3
b
i

Clear MPINUM

in MCARR(E) All E's
Processed ?

s o e

Yes i

b osh,] v

Place I and J

Hn prime implicant
list

A-9

Set RESULT = 0

!

Set MAX (C) =
(2"-1)-Result &
Output Subcube

Is
MAX(C) =

MIN(C)? /

NO

Set RESIILT =

RES!ILT + MIN (C)
+1

Set
RESULT = RESI!LT

(MIN(C) @ 2" - 1)

>

12

g ol e e W

TR s 3 . BN A IR M s € bk ¢ e

——

Set V = MIN(C)

2

Output Vertex

N

YES

A-13

Is V = MAX(C) ¥

ALNO

Set V=1V
e 4
OR MAX(C)

v

Set V=V +1]

I\

Set

V = V OR MIN(C)

\

Set

V = V AND MAX(C)

> Exit

B T P s Rt S

—

Pack low order

16 bits of MPI1

into bits 17-32
of MPI2

NOg//’;;nished with
k 11st

YES

A-14

E_ A=4

A-15

’

Get next cube
to registers

(MPI2) COUNT = §

A=27
/ INITCV \

Initialize for
CURRENT VERTEX

Transfer LO
VERTEX to

CURRENT VERTEX

)

Get M(ARR
(CURRENT VERTEX)

right justify

Is MCARR

en.ry = 1

CURRENT VERTEX
.2 HI VERTEX

Get next
CURRENT VERTEX

Add CO'INT to
bits 57-32 MPI2
and put in bits
57-32 MPI2

NO

Is MCARR No

entry = 2

Yes

O

Finished with
all cubes

I “ves

Exit

NO

Bl —ADNST
B2 —> ADNEND
B3 — ADMUL
B4 — ADNFROM

BS — ADNTO
B6 — ADMCARR

A-16

A

TP EYRRTURSNTRES. & T R

If value of field
in MPI2 is larger
than will fit in
MPI1 field set MPI1
field to all ONEs

CNT = CNT + 1

A-17

Save address of
E and MPI NUM
get address of

MCARR A-19

f A
Get vertices
from MPI2

CNT = 0

Get count from MPI1 will contain
bits 57-32 of comparison key

MPI2 and place in
lbits 56-40 of MPI1

CV = LO VERTEX CV (Current vertex)

T an

INITCV
Initialize
for current
vertex routine
$ D JA-18

Get MCARR(CV)

Is HCA?(C.V) YES Set MPIl to ZERO}
NO

A-19

Ry LA R

A-17

Is OV > <‘\\ANO

A-18

A-28
/ CURVER \

Get next

HI VERTEX‘/}
YES

CNT goes to
bits 6-20 and
bits 21-35

CURRENT
VERTEX

A-17

Store 15 in

CNT = bits‘\lNo
40-56 of
wertJ

YES

Store bit count
in bits 36-39
of MPI1

) bits 36-39
.of MPI1

Subtract
BIT COUNT -1
from the number
of ones in
LSIZE-1

Store result
in bits 2 -5

of MPI1

A-19

A-19 (::::)‘é

A-17
A-18

A-19

A 2

Increment

COMPARE

A-19

_ ZERO

Get vertices
from MPI2

(COMPARE)

inished with\ NO
A-
(fiall MPI2's 17
YES
| Reinitialize
indices. Set
MASTER to
ZERO
Is MPI1 ‘\\ygs
(MASTER) ZERO
NO
Is bit 59 "\ ves A-19
MASTER’S€4/r—
)k'No
Get vertices
from MPI2 Increment
(MASTER) Master
Set COMPARE Finished with NO
to MASTER +1 ‘1%ﬂgf§TER
YES fFinished with A-19
all COMPARE A=20 DONT
MPI's A-21(2) \ e
A~22

e e e

A-19

MI VERTEX of MPI2

(MASTER)A HI

VERTEX of MPI2
(COMPARE)

RESULT = HI NO
VERTEX of
MP12((QMPA§§)[

YES

LO VERTEX of MPI2
(MASTER)A LO
VERTEX of MPI2

(COMPARE)

MPI2 (MASTER)/
YES

Set bit 59 of |
MPI2 (COMPARE)

increment COMPARE

A-19

A-21

A-21

A-20

T g bt ST

A-21

A-20(2)

HI VERTEX of
MASTER A

HI VERTEX of
COMPARE

)

RESULT = HD\ yo
VERTEX of
MASTER

YES A-19

el e B

LO VERTEX of
MASTER A
LO VERTEX of
(OMPARE

PP TI. ——. S AR

A-19]

Set bit 59 of
MPI2 (MASTER)

A-19 ’

A-22

'
| DON'T) 419
E CARE
|
s
E K is low vertex Set K = Q
E of a new cube set

PINUM!I = MPINUM A-22

‘ ——O

Get value

of MCARR(K)

7
Is val
) =
(= 2
YES
L 1s high vertex ‘

of & new cube det index L to YES
K< LSIZE :
' L SIZE-1
; | NO
Get value
Decrement L of MCARR(L) —/

A-24(2) AL L

A=-23
Is value .D Increment K

1=
NO

—-CL < K) Set M to MPINUM Ae23 °

| A-22

H-MPINUQYES

A-22

A-24

A-23

A-22

Get vertices

of MPI2(M)

HI VERTEX
of MPI2(M) A L

NO

RESULT = LJ'

fs

LO VERTEX of
MPI2(M) A K

Increment M

'

RESULT = LO
vertex of

MPI2(M)

@ 4

A=22

A-22

Initialize
for current
vertex
routine

A-28
CURVER

Get next
CURRENT VERTEX

o\

Get value
of MCARR(CV)

]

(e vetee - 2122

Pack K and L

into & new
entry for MPI2

Store packed

word into
MBI2 ‘MPINIM1)

Store ONE into

MPI1 (MPINUML)

and increment
MPINUML

A-22

A-24

29

A-25
A-22

A-26
/ ETERM

Determine which
vertices of
MAP are covered

by only one
prime implicant

Set I =0

Is MAP(I)
covered by only \ NO
one prime

implicant

)L?ES

Mark prime
implicant which
covers this

vertex as
essential

NO

of vertices
\\\~¥ in MAP

B

A=25
A-36

Set all vertices
in MAP to not
covered state

1

I=0

Is PI(I) '\ NO
to be usedj

YES

Set each vertex
of this prime

implicant to
proper state

I=1I+1

A-26

State 1 =
covered by this
prime implicant

State 2 =
covered by more
than one prime
implicant

N o

e g e Sttt e e e

i \
|
|

Tag b
e

A=15
A-17
A-24
A-31
A-33

I16J® (LSIZE-1)
is stored in
EORCOMP
and EORTEMP

A-27

NOTE:
Required parameters
LSIZE

J

size of Karnaugh map
HI VERTEX

LO VERTEX

/\ = AND

+ = OR

c:>= Exclusive OR

-t
]

i

A-15
A-18
A-24
A-32
A-33

Pick up EORCOMP
and EORTEMP

(EORCOMP ++
EORTEMP) + 1
stored 1in

EORTEMP

CvV =
(EORTEMP ++I)

N\J

A-28

NOTE:

Required Parameters
I = LOW VERTEX
J = HI VERTEX

CV = (URRENT VERTEX

/\ = AND

++ = OR

’l;+>= Exclusive OR

e o B

s AN A AN V1 KO ik

S —

+ -

NOTE:
Get MCARR for this

equation from disc

A-30(2)

A-32 C
<

PICK) A=6

Get addresses of
MPI1, MPI2 and
E, Get MPINUM

|

Set I =0

Set COUNT =0

|

IMAX = I
Store MPI1 (I)
and MPI2 (I) in
MPI1 MAX and MPI2
MAX,I = I + 1

A-29

I

Get MPI1 (I)

P11(1)<:
MPI1 MAX

YES /7 MPTI(I) >

A-29

YES L Mp11(1)=0

_;J(ﬁo

A-29
A-30(3)

I =

I+1

Get vertices of
MPI2(I) and
MPI2 MAX

\\Euql\;f§0‘:> (:E<(MPINUM Fff—-
‘No

A-31

et Rt s Kot e 5 L H e e b i .

b o i 58 MM A R 4 0 A

syt
.

S

A=29

LO VERTEX
MPI2MAX > LO
VERTEX MPI2(I

NO

LO VERTEX
MPI2MAX K LO

J

A=29

VERTEX MPIZ(T‘//}

HI VERTEX
MPIZMAX

A=-29

VERTEX MPIZ(T‘///

HI VERTEX
MPI2MAX < HI

é @ o

VERTEX MPI;{A//,

A-29

A-30

A-29

C upn;m?x }ﬁ__y@ A-34

Set MPI1l(IMAX)
=0

Get vertices
from MPI2(IMAX)

€V = LO VERTEX
Get LSIZE for

INITCV

Initialize for
CURRENT VERTEX

A=32

A-31

A-31 A-32

Set MCARR(CV) 1s MPI2(IMAX)\ YES Set MCARR(CV)
=2 negative =3
l A-28
(URVER
V2 HI VERTEX\ No Get next
of MPI2 CURRENT VERTEX
Yes
Save MPI2
(IMAX) in E
(COUNT)
COUNT =
COUNT + 1
I1=0
A-33
Get MPI1(I) A-34

\L\

MPIL(I) = I=1+1

”"\

N

i

| Get vert%c;s ‘li‘
of MPI2(I YES
3 COUNT = 0 \Lﬁo

CV =10
VERTEX

of MPI2(1) Set I=0

f

|

A-33 A=-29

i e

Tnitialize
for CURRENT)
VERTEX routine

A-33

Get MCARR(CV)

J

1 CO'INT =

™\ YES
(MCARR(CV)-D-—"ﬁJ 3 COUNT

3 COUNT =
3 COUNT +1

\E«o

= 3 (OUNT +

1 (OUNT + 1

1

ﬁé——-ﬁ@mmwv) -3

F

Cv>Hl VERTER) NC

of MPI2(I)

ino

Set OLD 1 COUNT
= bits 21-35

of MPI1(I)

et bits 40-56 of

MPI1(I) = bits 40-56

of MPI1(I) - (OLD 1
COUNT - 1 COUNT

A-34

A-28

/ CURVER

AN

Get next

CURRENT VERTEX

Set MPI1(I)
= 0

()

A-32

& D%

Y

A=33 A-34 %

Set bits 21-35 3
of MPII(I) %
=] COUNT

L

Set bits 6-2J
of MPI1(I)
= 3 COUNT

,)

Set ML equal
COUNT I = 0

I

MPI1 = E(I)

I 2 COUNT =
< 2a ‘/} | V

YES

Tt 2

A

R

A-35

Bit 59 or

MPI2(IY= 0

\NO
/

MPINUM

€

YES

A-36

Determine which
vertices of
MAP are covered
by only one
prime implicant

Set discard flag
in all prime
implicants

v

Set I =0

Is MAP(I) wNO
covered by

only_oquJ/’

i

Reset discard
flag in this

prime implicant

of vertices
in MAP

A-36

Set indices
I=J=0

gl

Get MPI1(I)

MPIL(I) '\ Yes
negative ‘/,
RS

Store MPI1(1)
in MPI1(J)
increment J

Increment 1

- ()

A-37

A-38

A-41(2) ‘
A-43 j
A-44 i
A-45

Mask X3 16 bits
left shifted 32.
Mask X4 16 bits

left shifted 16

Puil out

LO VERTEX

Pull out
HI1 VERTEX

V4

A-7

S

Set indices !
I=0=7

A-39

i
']

Get MPI1(I) ;

W
__J

NO

Get MPI2(I)
store in E(J)

!

Increment J

a

Increment I

1
=)
ims

Set MPINUM = J W

J

BS —>

ADL : SIZE

\

B6 ===

ADI1

A-40

VPSRRI

. A-8
r!oTE. X A-al
MPI2 contains prime implicants -
for this equation '

MPI1 contains prime implicants
for all other equations

Set index I
to ZERO

A A-46

Set index J ;
to ZERO §

Set index K
to ZERO

v

Get E(I)

A-38

HI LO
Get HI and LO
vertices of

E(I)

v

LO VERTEX to X1

HI VERTEX to X2

f B) A-42

Get MPI2(J)

Get HI and 1O

vertices of.
HP;?(J) '

A=41

A-47

Determine 1if
MPI2(J) is a

the same cube

= A-46
as E(I)J~ :

NO

is MPI2(J) NO
a subcube
of E(I) f
Yes

K

Save MPI2(J)
in N BIT(K)

{

Increment K

{

Increment J

J 2 number of\\ No
terms in A-41
equation

A-43

A-42

e

A=42

Any subcubes \ NO A-46
(foud _J)@
| YES

Set index L

to ZERO

il

Get MPI1(L)

Get HI and |
vertices of

E(I) and
MPI1(L) thej

same cube

Yes

Set PI COST = 1

)‘kno

Increment L

L 2 number
of terms in

A-44

Set Y to the

number of ONES

in the result of

HI VERTEX @ LO VERTEX

A-43

A-44
A-43

Set X to the
number of ONES
in the result

of LSIZE-1

3

Set PI COST
= X-Y+1
SUBCOST = 0

2

A=43
Set index L , A4S

—F—O

“et subcube

from NBIT(L)

I

o

HILO

Get HI and

10 vertices
from NBIT(L)

| Set index M

Move HI and
LO vertices A-45

A4S

A-44

A-38

HILO

Get HI and
LO vertices

of MPI(M)

Subcube us ed\ YES

A-45

SUBCOST =

>

in other
equation J
NO

Increment M

number of\ No

SUBCOST + 1

Set Y to the

number of ONES in

the result of

HI VERTEX @ LO

VERTEX of subcube
in NBIT(L)

SUBCOST =
SUBCOST +
(X-Y)+1

S

()

A-44

&

Increment L

A-44

A-46

A=45

PI COSTL
SUBCOST

e B s T Pt s £

In MCARR table

build section with ;

the following entries:l) ;

No.of subcubes 2) cost '
savings 3) equation No.
4) prime implicants

S) subcubes

Increment 1

entries 1nf\fo A=41

iriginal cove

Set MCSTNIM to
number of words

of MCARR used

A-42

SUBCUBE

HI VERTEX of

A-47

of

big cube NO

contained in
LO VERTEX
of candidate

Set subcube

flag

Reset subcube

flag

e—

&

nsa st T 2

PRI

A-48

Set index I
to ZERO

t first cost
entry for

téblg
increment 1

_—

T

Get next
entry from
cost table

Cost of fifsz NO
Gco_ng_f)
second

\LYES

Replace first
entry with

this omne

Increment I

I 2 number

N
0 of entries in

cost table

[RPRRSUS—

il El B

e

[TS RERIY. VR SN

P . T

WERPRCR SR SRR

REPLACE

Add less costly
cube to end of

equation

ZERO
set index K to

| Set Iindex I to |

ZERO

A-50

%

Pick up equation
TERM(I)

Set index J
to ZERO

Get costly

cube (J)

Equation ter
I = costly

0 A-50

A-50

A-49

4
5

R

A-49

Save equation
term (I) in
equation term

()

Increment K

i (5

Increment I

I 2 number NO

of equation
terms ‘,,

YES

A-49

A-50

[—

A-8

Set index I

to ZERO

—3

Get PI(I)

/

Put HI VERTEX
into MPI2(I)
puq_ég_!ERTEX
into MPI1(I)

b

Increment I

No / 12 number

of equation
terms

YES

EXIT

A-51

3
]
H
1
1

