
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19710020620 2020-03-11T20:27:45+00:00Z

'`^	 ^--119850

4%
MCR-70-38
(Supplement 2)	 COPY NO.

FINAL REPORT

FOR

SUPPLEMENT TWO

FORMULATION

OF A

TELEMETRY COMPUTER PROGRAM

CONTRACT NAS8-24017

MAY 1971

C4̂
	 (ACCESSION^.SB	 (THRy)^

x	 _
O 	 (PA E) 	 (CODE)

a (NASA CR OR TMX OR AD NUMBER)	 (CATEGORY)

ti

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GEORGE C, MARSHALL SPACE FLIGHT CENTER

MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

Electronics Research Department
Martin Marietta Corporation

P. 0. Box 179, Denver, Colorado 80201

40

i

t(

JUL 1971

RECEIVED
r s ^ir4A in FolUff

UK no

1 I	 . J'

i

tl

MCR-70-38

(Supplement 2)

FINAL REPORT

F OR

SUPPLEMENT TWO

FORMULATION

OF A

TELEMETRY COMPUTER PROGRAM

CONTRACT NAS8-24017

MAY 1971

Keith H. Hill
Robert 0. Leighou
Duane L. Starner

Robert 0. Leigh 6u

Program Manager

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GEORGE C. MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER, ALABAMA 25812

Electronics Research Department
Martin Marietta Corporation

P. 0. Box 179, Denver, Colorado 80201

4

k:

ii

FOREWORD

This supplement to the final report is presented in response
Y

to Paragraph III.2 of Exhibit A of Contract NAS8-24017.

I-1 3-Variable n-Cube 4

I-2 3-Variable Karnaugh Map 4

I-3 Karnaugh Map for Sample Equation 4

I-4 Numerical Representation of Vertices 6

I-5 Sample Number 2 6

I-6 Two Equation Problem 8

I-7 Decimal Counter Example 8

IV-1 Type and Cutoff Control Card 20

IV-2 Master Control Card 21

IV-3 MCARR Table 22

IV-4 DONT CARE Control Card 23

IV-5 TO-FROM Equation Card 26

F

CONTENTS

iii

Page

FOREWORD ii

CONTENTS iii

ABSTRACT iv

I. INTRODUCTION 1

II. MULTIPLE EQUATION ALGORITHM 10

III. PRIME IMPLICANT GENERATION 13

IV. DATA PREPARATION 1.0

V. CONCLUSIONS 27

APPENDIJI A-i through
A-51

Figures

ABSTRACT

The algorithm described is a fast algorithm for the simultaneous

minimization of multiple Boolean functions to a two-level AND-OR form.

The major advantages of the algorithm are that it is fast, does not re-

quire excessive storage capacity, handles multiple functions, and utilizes

unused input states (don't cares) for simplifying the functions. The

program as written handles up to to variables with no limit to the number 	
%

of functions; however, the resultant total number of prime implicants may

not exceed 3073.

As an example of the performance of the algorithm, a problem consisting

of ten functions with ten variables took about 50 seconds of CPU time on a

CDC 6500 computer. These ten functions were nominal type functions with

approximately 50 percent of the vertices filled. A worst case ten function

13 variable problem took 35 minutes. This problem is considered worst case

because it contained 6392 don't care vertices out of the 8192 total per

function. This large number of don't cares increases, the search time for

prime implicants and also gives a large number of prime implicants, thereby

increasing the time required for final selection.

This algorithm thus provides the capability for minimizing a set of

functions of a large number of variables which were previously done poorly

by manual methods and could not be done by computer because of excessive

time and storage requirements.

iv

7

1

I. INTRODUCTION

This paper describes a computerized procedure for reducing, or

simplifying a set of Boolean equations. This is a process which is

required for determining a low cost implementation fL,r any digital

logic system to be built. For small systems or parts of systems the

reduction of a single function or equation can be accomplished manually

using techniques well described in several available textbooks (e.g.

Phister I and Cauldwell 2). For a combinational logic circuit with

fewer than 7 variables the manual processes work quite well. Beyond

7 variables, a'pproximate minimizations are usually accomplished by

partitioning the problem into several smaller problems. Computer

programs have been written implementing the standard methods to solve

problems with more than 7 variables, however historically the memory

requirements and running time has been excessive for more than 12 or

13 variables, forcing the partitioning of larger problems for approxi-

mate solutions. Memory requirements approximately double with each

additional variable, and execution time increases exponentially.

The problem becomes even more complex when there are several

outputs or functions of the input variables. There is no known pro-

cedure to generate a true minimum for this multiple function case.

Good solutions can be found by extending the single function procedures,

however extension processes are not well developed in the literature.

'Hontgomery Phister, Jr., "Logical Design of Digital Computers," John Wiley
& Sons, 1958.

ZSamuel H. Caldwel t o "Switching Circuits and Logical Design," John Wiley 6 	 '
Sons, 1958.

1

2

No known computer programs exist for simplifying multiple equations.

A hardwired telemetry formating technique developed by Martin

Marietta generates a set of non-reduced equations for translating
r
i

word and frame counter states into 10 bit addresses for use in a

remote multiplexing system. There can be up to 16 input variables

and up to 8 modes or formats, each requiring 10 equations. The

broad applicability of this format generation technique emphasized

the importance of having a computer program available to reduce the

equation set for low cost implementation. The computer program de-

scribed herein is the second step towards the realization of such a

program. The first step was a program for simplifying a single

16 variable equation. This program is based upon the results of the

single equation program. Both programs are general purpose and can

be applied to the entire spectrum of digital logic design, of which

this telemetry formatter is only one significant example.

Basic knowledge of Boolean algebra is necessary for the under-

standing of the algorithm as discussed herein. The following para-

graphs are not intended to substitute for this basic knowledge, but

to serve as an intrc.duction to terminology used later and as a brief

review of basic Boolean algebra, and logic reduction principles. A

simple Boolean equation of four variables is shown as:

F • ABCD + ACD + ACD.

.:	 3R. H. Hardin, "A Multiple Format Telemetry Prograaa er," National Telemetering
''	 Conference, 1967, San Francisco, California.

1

3

This equation is written in a sum-of-products farm. The first term,
r

ABCD, contains all four variables and is therefore a minterm. A

problem with n variables has 2n possible minterms. These minterms

can conceptually be visualized at the vertices (if an n dimensional

1	 cube. Figure I-1 shows a pictorial representation of a 3 variable

cube.. Another more convenient representation of this same cube is

the Karnaugh mp.p shown in Figure I-2. Figure I-3 shows a four

variable Karnaugh map with entries depicting the function given in

the above equation, where X is an entry and the number in parenthesis

indicates the term of the equation from which the entry came. By use

of Boolean algebra or by examining the Karnaugh map, the sample

equation can be reduced to

F - ABCD+AD

The cost of the original equation using the number of gate inputs as

a criterion is a four input gate for the first term, 2 three input

gates for the last Wt . terms and a three input gate fL-r the OR function

for a total cost of 13. The cost of the reduced equation is determined

to be 8 by a similar procedure. This cast criteria is commonly used

in the literature.

The algorithm which is presented is an autc.mated process for ex-

amining the Carnaugh maps of several equations and selecting a good

solution. For computer representation of a Karnaugh map, it is con-

^P	 a

l^

ABC

ABC	 ABC

FIGURE I-1: 3-Variable n-Cube

ABC

4

ABC
	

ABC

J

ABC	 ABC

ABC	 ABC

A

ABC	 ABC

ABC	 ABC	 C

D

f

B

FIGURE I-2: 3-Variable Karnaugh Map

A

B

FIGURR I-3: KarnauBh Map for Sample 8quation

4	 '
A

R

d

5

i

1

venient to represent the vertices numerically. Figure I-4 shows a

four variable map with decimal entries c:rresponding to the binary

value represented by each minterm. For example the minterm ABCD is

in binary form, 1010, which is a decimal 10. The equation of the

previous example therefore occupies position 3, 5, 7, 9, and 12 in

the map.

Two important concepts in the minimization process are subcubes

and prime implicants. A subcube is a set of vertices which correspond

to a single term in a sum of prr•ducts equation. In the special case

where all variables are present in the term, the subcube is a vertex.

In Figure I-3 the subcubes present were ABCD, ACD and ACD from the

original equation. Other subcubes for this example are AD, ABCD,

ABCD, ABCD and ABCD. A prime implicant is a subcube which is not

wholly contained in another subcube of the function. For the above

example the only two prime implicants are AD and ABCD. The minimal

solution is a sins of prime implicants, however not all prime implicants

are required. For the example of Figure I-5, the prime implicants are

AC, BCD, !BD, ABC and ACD. The minimal solution is AC + r.BD + ACD.

This solution was obtained by inspection. On a larger problem a

methodical procedure would be required.

When a simultaneous minimization of several equations is desired,

the process changes. The individual equations may not be minimized

in order that terms may be shared between equations and thus achieve

0 4 12 3

1 5 13 9

3 7 15 11

2 6 14 10

D f

D f
X X

X X X

X

X X

C

B

FIGURE I-5: Sample Number 2

6

I

^	 I

C

B

FIGURE I-4: Numerical Representation of Vertices

A

h

7

f

F

a net overall minimum cast. Figure I-6 is an example of a two

equation problem. The individual minimal solutions are:

Equation 1 = BD + AB

Equation 2 - ABD + ACD

The cost of equation 1 is 6 and the cost of equation 2 is 8, for a

total of 14. If equation 1 is rewritten as

Equation 1 - BD + ABD

the cast goes up to 7 when considered by itself. When considering

the two equation problems, ABD is a shared term and only needs to be

generated once. The total cost becomes 12. The algorithm presented

attempts to maximize the cost savings possible by term sharing.

In the above examples all vertices were specified as a ONE or

a ZERO, i. e. either included or excluded from the equation. For many

problems there are a set of states (vertices of the n-cube), which the

input variables cannot achieve because of outside constraints. These

vertices are called don't-care vertices and may be assigned as a ONE

or ZERO to simplify the equation. A simple example of such a situation

is a decimal counter using four flip-flops which reset after count

nine. Figure I -7 is a Karnaugh map for decimal counter with the

equation being true for counts 2, 3, 6, 7 and 9. The don't-cares

are shown by 0. Without using the don't cares the reduced equation

is F • AC + ABCD. When the don't-cares are used the equation reduces

iM

A A

r

B

D

1

D

B

A

0
0 1

1 1 0 0
1 i 0	 1 0

8

d

C

Equation 1

FIGURE I-6: Two Equation Problem

C

Equation 2

B

FIGURE I-7: Decimal Counter Example

t7-

i

9

to F - C + AD. The unallowed counts of 10, 11, 13, 14 and 15 are

used as ONES and 12 is ZERO. If several equations were being derived

from this counter, each one can use the don't-cares without regard to

the manner in which the other equations used them.

i

10

II. MULTIPLE EQUATION ALGORITHM

The steps in the total process are to read each equation, includ-

ing don't cares, into the Karnaugh map and generate the set of

prime implicants for each equation. From this set, a merged list

is generated that contains the prime implicants frtm all equations

with duplication eliminated. The generation of prime implicants is

the most costly part of the process in terms of computer running

time. The algorithm for prime implicant generation is presented in

Section III. The remainder of this section discusses the method used

for prime implicant selection for a low cost solution to the multiple

equation problem.

The selection algorithm consists of three phases. The first

phase is a preliminary selection of prime implicants followed by

Phase 2 which eliminates any redundant subeubes present from Phase 1.

Phase 3 examines the equations from Phase 2 looking for the possibility

of replacing several small cubes by one larger cube with a resulting

lower cost.

Phase 	 - The first step in Phase 1 is to select all essential

prime implicants. An essential prime implicant is one which cowers

one or more required vertices which are not covered by any other prime

implicants, When this is accomplished, all remaining vertices are

covered by at least two prime implicants. The selection continues by

generating a comparison key for each remaining prime implicant and se-

lecting the one that has the laritent koy. Th- I•eyf: are revised after each

11

1{

,	 1

selection and again the remaining prime implicant with the largest

key is selected. This process continues until the revised keys become

all zero. The five comparison keys in decending order of importance

are:

1. The total number of ONES covered from all equations.

2. Cube size.

3. The number of ONES covered in this equation.

4. The number of ONES covered in this equation plus the number
of covered vertices contained which have been covered pre-
viously by subcubes.

5. Cos t

KEY-1: This key being in the most significant position forces

the selection of the prime implicant which has the largest contribution

towards satisfying the complete set of equations being reduced.

KEY-2: Because of dcn't care vertices it is possible to have a

small cube cover the same number of vertices as a large cube. This

key furces the selection of the larger cube first, which has a lower

cost. This key is modified to maximum size for thoF,e cubes which occur

in more than one equation. This forces the consideration of terms

which can be shared between equations.

KEY-3: For prime implicants which are equal in Keys 1 and 2,

this key forces selection of the one which is most important for the

equation being reduced.

t	 '

Y

12

KEY-4: This key takes the count for Key 3 and adds the count of

vertices covered by previous subcubes. This again aids in selecting

terms which are most important for the equation being reduced and pre-

vents Key 2 from forcing an all subcube solution due to the sharing of

terms from other equations.

KEY-5: This key is the number of gate inputs required to

generate the prime implicant less 1. The 1 is subtracted so that

the maximum cost is 15 which only takes 4 bits in the key word instead

of the 5 bits required for 16. This key selects the smaller prime im-

plicants when all other keys are equal. This can only occur when Key 2

is maximum because the term appears in more than one equation. The

smaller cubes must therefore occur in more equations than the larger

cube if all other keys are equal.

In the event of a tie in the comparison key, the prime implicant

with the largest lower vertex is chosen. If that is also equal, the

one with the smallest upper vertex is selected. This cannot be equal

or the two prime implicants would be the same. This vertex selection

picks the last prime implicants generated in the prime implicant gen-

eration subroutine. This implies less probability of covering vertices

that can be covered by a large number of other terms. Our test problems

have shown this to be a good criterion.

Phase 2_ - Phase 2 examines each equation for the. presence of

redundant cubes and eliminates them. A redundant cube is one whose iM

J

13

vertices are completely covered by other cubes in the equation. These

redundant cubes can occur because of the high priority of shared prime

implicants.

Phase - This phase examines all terms of the merged prime

implicant list which have a non-zero comparison key for a given equation

to determine what terms of the equation could be eliminated if this prime

implicant were used. When terms of the equation can be eliminated, the

implementation cost of using the new term is compared with the cost of the

replaced terms. If a cost savings results the new term and the cost savings

are saved in a list. This continues for all prime implicants and all equa-

tions. When the cost saving analysis is complete the prime implicant with

the largest cost savings is selected and replaces the appropriate terms

in the equations. The cost analysis is re-entered and the high cost savings

term is selected again. When no further cost savings are possible by this

procedure the algorithm terminates and the final solutions for all equations

are printed.

1

iM

14

III. PRIME IMPLICANT GENERATION

This section describes the algorithm used for prime implicant

generation. This is described separately since it is a very important

part of the overall minimization process, requiring a significant part

of the computer time for a given problem. The algorithm is based upon

the results of C. C. Carroll 4 . Mr. Carroll developed two mathematical

theorems which form the foundation of the prime implicant generation

algorithm and are described below.

It is clear that for any subcube there is one vertex which has the

largest binary value and one that has the smallest binary value. The

operation "A " between two vertices is defined as a bit by bit AND of
the binary numbers (e.g. 1010 n 0110 - 0010). If two vertices vi

and v2 of an n-cube are such that vl A v2 - vl , then this relationship

is defined as vi<— v2 (e.g. 0101 / , 1101 - 0101; therefore 0101 <--'

1101). This can be thought of to mean vl is contained in v2.

• Theorem 1: If c F Cn , then min (c) -<—max (c)

This theorem states that for any subcube, the minimum vertex

(min (c)) is contained in the maximum vertex (max (c)).

- Theorem 2: v q C if v olE— max (c) and min (c) F v

This theorem states that a vertex v of the n-cube C is an element

of the subcube c if and only if v is contained in the maximum vertex

max (c) and the minimum vertex min (c) is contained in v.

4C. C. Carroll, "A Fast Algorithm for Boolean Function Minimisation," AD680305,
Project Theoiis, Auburn University for Army Missile Command, Huntsville, Alabama,
December 1%8.

J

15

I `

Theorem 2 proves that the minimum and maximutu vertex of a subcube

are sufficient tc completely specify a subcube, and Theorem 1 provides

a simple test to determine if tw(.. vertices determine a subcube. It

is also apparent fr.-!m theorem 1 that the maximum vertices for all sub-

cubes with a common minimum vertex can be generated directly. This can

be done by taking the 0's of min (c) and letting them take on all pos-

sible combinations of 1 1 9 and 0's, keeping the 1's of min (c) fixed.

Similarly all vertices of a subcube can be generated by using theorem 2.

Take all 0's of min (c) which correspond to 1's of max (c) and let them

take on all combinations of 1's and 0's, keeping fixed the 1's and 0's

of max (c) and min (c) which correspond.

An example of subcube generation with a common min (c):

Let min (c)	 01010. the subcubes

are:	 010109	 01010 (the vertex min (c))

01010 9	01011

01010 9	01110

01010 2	01111

01010 9	11010

01010 9	11011

01010 9	11110

01010 9	11111

i

16

An example of subcube vertex generation:

'	 Take the subcube 01010, 11011. The vertices of this subcube are:
1

01010

t
01011

11010

11011

The computer implementation of the two generation processes are straight-

forward iterative procedures. For the subcube generator one starts with the

first max (c), which is equal to 2n-1 for the largest subc-ibe. The remaining

max (c)'s are obtained by subtracting binary numbers called RESULT, from

2n-1. RESULT takes on all binary values that have ZEROs in the positions

corresponding to ONES of min (c). The RESULT values are generated in ascen-

ding order which generates subcubes in descending order.

The generation of the vertices of the n -cube starts with min (c) as the

first vertex. The complement of max (c) is bit by bit ORed with this vertex

with a binary one being added to the result. Following the addition, a bit

by bit OR with min (c) is performed followed by a bit by bit AND with max (c).

This process continues until max (c) is reached.

For a given equation the first non zero vertex is used as the min (c)

and all subcubes with that min (c) are generated, with all non zero max (c)s

being flagged in the Karnaugh map. For each flagged max (c) the following

actions are taken.

IM

r

17

a. If MCARR(K) is a DONT CARE state (=2), the index K is saved

in a list (E list) and the E bit counter is incremented.

'

	

	 b. If MCARR(K) is ZERO, the J flag for this max (c) is cleared

and the next max (c) is calculated to form a new (I,J) cube and all

lists generated for the old cube are abandoned.

c. If MCARR(K) is a CARE state (=1), the index K is saved in

a list (L list) and the L ccunt is incremented.

d. If MCARR(K) is a COVERED CARE state (=3), the index K is

saved in the E list and E list count is incremented and the size of

the cube covering the vertex is examined. If the old cube size is

greater than the size of the cube under examination, nothing further

is done. If the cube under examination is larger than the old cube,

the NONCNT counter is incremented.

When a cube has passed all the MCARR(K) examinatio-3 , the cube

is a prime implicant. For each element in the L list (i.e. CARE K's)

the following operations are performed:

a. The size of the current cube is placed in MCARR(L).

b. The prime implicant number is placed in MCARR(L).

c. -The CARE state (m1) is changed to a COVERED CARE state (s3).

d. The J flag is cleared for MCARR(L).

When all max (c)s for a given min (c) are exhausted, the next non

zero min (c) is obtained and the process is continued. When min (c)

exceeds the largest 1 bit set in the Karnaugh map, the process terminates.

I

18

It is important to note that a complete search of the Karnaugh

map is made before the subcube generation process terminates. Our

test problems indicated that this results in improved solutions in

some examples over a termination process which stops generating sub-

cubes when all required vertices have been covered. For large equations

with more than 12 variables and with large numbers of don't-care verti-

ces, a large amount of computational time can be spent searching for

subcubes after all vertices have been covered. The limited experience

with this type of problems indicate very little degradation of solution

if the earlier termination is used. Therefore a control card is used

to allow a user to select between early cutoff and no cutoff, thereby

making his own cost effectiveness decision. The same control card is

used to select input mode. The two input options are equation or ver-

tex number designation.

r

19

if

IV. DATA PREPARATION

The program prepares for the algoLithm by first reading two

control cards. The first consists of two fields as shown in Figure

IV-1. The type field controls the type of equation input, and the

cutoff switch field controle the cutoff switch. The master control

card consists of 1.7 fields as shown in Figure IV-2. The size field

controls the size of Karnaugh Map (MCARR, Figure IV-$ used by the

program. n e remaining fields are used to control the interpretation

of a term of an equation. The bit numbers which are active are in-

serted into the first fields with all other fields being zero. Thus

for a four variable problem the first four fields are filled with 1,

2 3, and 4.

The next card(s) are the cards containing the information about

the DONT CARE (excluded) states. This card consists of six fields as

shown in Figure IV-4. The first field is an end-of-data type indicator

and is used only following all cards which contain data (of which there

may be none). The second field contains the first DONT CARE state ex-

pressed in a decimal number. The third field contains the last DONT

CARE state expressed in a decimal number. The fourth field contains

the multiplier. The fifth field contains the first number to be multi-

plied. The sixth field contains the last number to be multiplied.

The data preparation phase of the program first initializes MCARR

to zero using the size input to the program to determine where to stop.

The program then uses the CONT CARE control cards to set the DONT CAR$

FIGURE IV-1. Type and Cutoff Control Card

20

Type of Equation Input - - 0 = Equation form

1 - TO-FROM form

Cutoff Switch - - - - - - 0 = No early cutoff

1 = Early cutoff

a-J

1

006 0 0 00000000000000000000000000001000000000u0000000000000000,000000000000000000
1 2 3 WS 17 1 110n12131415K1118if20212223242 1 2$27X2930317233 13$36373131 40 41 42 43 44 454641ItNS6 51 52 53 54 55 56 57 54 50 60$1620441501616883 : 1213747576 7179

111^11111111111111i111i111iliiliitii1i11ii
x

22222222:1222222222222222222212222222222222222122222222222222222222221222222222
x

333 33
x

444944144.4
x

555955
x

666166 6 6666666666666666666565666
x

777177 7 7717777771117777771117771117777777711777777777777777777777777777111111111

88i18 8111181111911888881181188881888/88888888888881888818818/1/188188888888111

999 99 999
1 2 3	 1 161 IS" 12 13 14 A It Q 13 13 20 21 ;2 :3 24 25 26 27 2029 20 31 12 72 34 35X3771)040 41424344 4447441 50 515253 54 55 S6 VW 530 P s aUP1%aBa62707112737475x7j707010

rev sM

•

oa

a

w
0

w
NN

G
.0	 O

4+

g40o
w 6 G d
$4 'o O
V v+ M V

w 41

n to +1
o $4

9: v m ^N
as d

a bo w W
d w

4j u â^

Iowa
fid

21

11111
1 2 3 4 5

11111

22222

33333

44444

55555

66666

11177

81111

99999
12745

a" *I? an "n x 212!]172 N AS	 7/	 n a" o n	 56

22 22 22 22	 2 22 22 22	 2 22 22 22 22

33 33 33 33	 3 33 33 33	 3 33 33 33 31

44 44 44 44	 4 44 44 44	 4 44 44 44 44

55 55 55 5 	 55 55 55	 5 55 55 55 55

66 66 66 66 66 66 66 66 66 66 66 66 66

11 11 77 11 77 77 77 77 77 77 77 11 77

ii 88 i8 88 81 81 88 88 88 i8 is 81 88

99 99 99 99 99 99 99 99 99 99 99 93 99
DK 1/h on u" IS 212! 3142 7. 15	 V;1 00 430 4611	 56

000000000000000000000000001
54S5565158"N6162636485U61U61Xn 12 73 747576 77 4 79 0

2222222222222242222222222222

333333333333333333333333333

444444444444444444444444444

555555555555555555555555555

666666666666666666666666666

777777117777777777711177777

888888888888888888688888688

999999999999999999999999999
9 N 56 31 W H60 616:61640U67H0A 1; 12137 i T. '6 77 71 79 50

FIGURE IV-2, Master Control Card

i

ENTRY 0 ENTRY 1

ENTRY 2 ENTRY 3

ENTRY 4 ENTRY 5

ENTRY 65532 ENTRY 65533

ENTRY 65534 ENTRY 65535

60 BIT
WORDS

22

/}

MCARR TABLE

ENTRY DESCRIPTION

JF	 CS	 MPINUM	 D
	

30 BIT
ENTRY

JF - J FLAG - 1 octal digit - When set indicates that this is a good high
vertex for a cube.

CS - CUBE SIZE - 2 octal digits - Set to the cube size which covers
this vertex.

MPINUM - PRIME IMPLICANT NUMBER - 6 octal digits - This indicates the
number of the cube which covers this
vertex. If ZERO, the vertex has been
covered by more than one cube. Used for
essential prime implicant selection.

D - DESCRIPTOR - 1 octal digit - If set to ZERO indicates bit is ZERO.
If set to ONE indicates bit is ONE.
If set to TWO indicates bit is DONT CARE.
If set to THREE indicates bit was ONE.

and has now been covered; CS and MPINUM
are used only in this state.

FIGURE IV-3, MCARR Table

%.

a

ii

I"....

P290 1023U00 MM Ma / +I•AI ZIOU

11111Kt/It 41 ►'Vt/It010I► (I1111ht11111b ItKtSISSSKHt1ISIS6111t► I► 1► Nt1 t► q 441C Ktt ItSt Zr tt K U UKUttIt 11 111111%
66 66666 6666 66666 66666

'^	 1l(11391tllflltlllflflffllfltlltfttlttff Iflll !1811 tittl ftlll

L L-L LLLLL

9999999999999999999999999999999939999999 99999 99999 99999 99999

SS SSSSS SSSSS SSSSS SSSSS

itiii

£££££££££££££££££££££E££££££t9££££££££ 	 £££££££ £££££ £££££ £££££

IIIzzzIzzzzIzzttttttIIIIIzzIzzzzzztzIIzzI ZIZI tZZZZ IIZtt 11Ztt

ttttttttttttttttttitttltttltttttttttttttt IIII IIIII lttll llttt
NKILUKUREIUUKf I g t1IISIHLInIS "UK IS%UKaIS KNOW 1* 	%0000 1t ItKit It KUK StKUUR LI112"

000 0000	 ..00000 00000 0000

Oft '"MM AXM

66666 E666

I I I I I 1111	 I

L L L L L L L L L

99999 9999

SSSS SSSS

Mt Mt

££££ ££££

1111 tZtt

illt tttt
oil I1 0 t I I
0000 0000

oy xajjdpjnH

moa3 jajjdjzjnN

aajjdjljnx

93V38 ea vo 3 tuop 3ssj 803ltoj puT 9383g 3owl

v3vp HaD ZHOQ 3 saw e9:1eoFpuj • 9:1B:lS aesj3

poss000ad uooq ewq paio j•*I eq3 zvgz -eazaojpul ****

£z

r

I

24

state in MCPARR. The program uses the following calculation to de-

termine the bits to set for each DONT CARE control card:

(first state + N) + (multiplier) (Multiplier from + M)

where N - 0 9 1, 2, 3, ... and M - 0 9 1, 2, 3, ... and when (first state

+N) - last state, then M is incremented and (first state + N) is set to

(first state + 0). After (multiplier from)= (multiplier to) the next

card is processed.

At this point in the data preparation phase, MCARR contains no

care states. The program then determines the type of input and if

equation form is indicated, the program then reads an equation term

in the form :

S1 - Ql Q2 Q3' Q4

Ql Q2' Q3

The equation term may be placed in any card column but may not extend

to the next card. There may not be more than one equation term per

card .

The program reads the card and, using the bit numbers input in the

master control card, interprets the term in the following manner. If

all the bits called out in the master control card are contained in

the equation term, then the bit pattern is used as a binary number

pointing to that single care state. If all the bits called out in

the master control card are not used in the term, then the unused bits

are considered as X state bits and are taken through all possible

states and all the resulting states are set into MCARR.

t

n

F

i

I	 a

I

25

If the type indicated is TO-FROM form, she next card (Figure IV-5)

is read and the appropriate vertices An MCARR are set. The program

then generates all the necessary"prime implicants. The program then

determines by looking at the next card to be read if another equation

is to be reduced.

The program determines the last care (ONE) bit set before it

enters the prime implicant generation routine.

If another equation is to be reduced MCARR is initialized again

and the same DONT CARE cont.ol cards are used to generate the DONT

CARE states. If the card contains **** in the first four columns,

the program terminates.

I=

1

26

A Equation Identifier

FROM - Decimal number which begins a sequence of ONES

TO - Decimal number which ends a sequence of ONES

(NOTE: From and to field may be the same)

43

000a	 00000 700000000000000000000000008000a00000000000000000080000000000000000a0
1 2 3 4	 1 1 11011	 NOX1111 OX21222324'26 21 n293930 31 32 33 34 35 30 31X39 40 41 42 43 44 45 46 47 4149505 1 5S354 9565# 51 5960616263646566SIU69'0 12nM?5Mn709N

11111:11111	 11111i11^ii11
K^	 x>c

2222 X122222 x2222? 2222?2222222222222222222222222<<2221?222222222222222222222222

33331 3333311333

4444*k444441 44444 4441444

5555555551151555

6566X9X666661M66666666666661666

7777go77717	 7777777777777717777777777777777777777777777117777777711777777777711

1118 111111	 A916111181111816118118111111111111111111A11181611861111/61116/11111

999 9	
_

	99999	 999993999
1 2 3 4	 0 1 10 11	 N 15 it h N n 2122 2:24 2516:1 2129 30 31 V 33 34 35 :631 31 39 40 41 42 4344 45 40 4141415151 u 53 94 SS SS S::.+ 59{0 01 52 U 9A %11111 u H 10 7172 13 11 r, •o R •91110

rev ^ww

FIGURE IV-5, TO - FROM Equation Card

27

i^

U - CONCLUSIONS

The computer program that has been developed shows considerable

promise in the minimization of Boolean functions. In particular, it

provides the capability to minimize multiple Boolean functions with up

to 16 variables. In addition, it has the capability to make use of the

forbidden states when the function is for non-binary systems. Tests

showed that the algorithm was indeed very fast, that it did not

require excessive storage capab i lity, and that it found the minimum two

level AND-OR representation in all of the test problems. It may be that

the algorithm will always find the minimum but the proof of this would

require considerable effort. Since the algorithm will always provide a

solution that is close to the minimum, this additional effort would not

be warranted except for purely academic reasons.

The results of this program to date have been the achievement of an

algorithm which is both good, in terms of solution quality, and practical,

in terms of computer time required, for a classical two level AND-OR mini-

mization of multiple functions of a large number of variables. The results

are so good that the necessary steps should be taken to make the algorithm

even more useful. These steps are:

1. Modify the input and output routines to allow a large flexibility

in problem specification formats.
i=

r

28

2. Extend the minimization to a multiple level solution which looks	 R

for common subterms which can be shared. This is partially accom-

plished now, in that terms of one equation which are subterms of

another equation are used. As an example of subterms of a single

equation consider F - ABCDEF + ABCEFG, which can be factored as

F = ABC(DEF + EFG) indicating a sharing of the subterms ABC.

3. Customize the solution to a particular logic family, taking into

account fan-in and fan-out capabilities as well as incorporating

special functions where applicable.

These three steps are not completely separate in that the improved input/

output format is desirable for any useful program and the customization for

a logic family implies multiple level solutions because of fan-in limitations.

The steps 2 and 3 can be taken separately, but could be more efficiently accom-

plished together.

0

A-i

APPENDIX

This Appendix contains the flow charts for the computer programs

which implement the algorithms discussed in the main body of the report.

i

I^
l
I

r

A-ii

APPENDIX CONTENTS

Routine

MAIN

ALGOR

SUBGEN

VERGEN

PACK

MAJOR

ni1M1

SELECT

DON'T CARE

ESSEN

ETERM

INITCV

CURVER

PICK

SEXIT

CLEARN

REDUN

HILO

PACKS

DUH3

COST

SUBCUBE

GETSAV

REPLACE

UNPACK

Pang

A-1

A-9

A-12

A-13

A-14

A-15

A-16

A-17

A-22

A-25

A-26

A-27

A-28

A-29

A-34

A-35

A-36

A-38

A-39

A-40

A-41

A-47

A-48

A-49

A-51

A-1

MAIN

and CUTOFF
SWITCH contro

card

Read master
!	 control

card
J

Read all
DONT CARE	 Maximum of 50 cards

control cards

A	 A-2

Initialize
array MCARR

to ZERO

Set to 2 all
vertices

specified in
all DONT

CARE control

3

1

4

'W.LYPe No
of input

YeYes

Read next
Card

	

rrinisnea	 Yes

	

with all	 C
equations

	

NO	 A-3

Set to ONE	

j

Yesshedall vertices	 No
	 thisspecified by
	 equationthis equation

t rm

 A-2

Read next
Card

Yes Finished
with all
equations

NO

Finished	 NO alltvertices
with this	 specified by

equation TO-FRO card

Yes

A-1

B

A-2

Write MCARR

\

on disc

File 1 j

A-9

If cutoff switch ALGOR

was set, ALGOR	
LO VERTEX in

(hisserate prime 	 one word
will terminate licants for HI VERTEX inwhen all ONE bits 	 equation	 second word

have been set

i

rant prim
implicant
for this
Fquation/

Write prima
implicants
for thi s
equation
on disc7y

A-1

A-3

Write end
of f ile
on File

\ I & 2 ,

r
I

Rewind
files

1 & 2

Read next
equations

prime
mplicant
File 2))

Place all new
prime implicants

in merged
prime implicant

list

Finished
	

NO
with all
equations

Yes

int merged
prime

.mplicant
list

Rewind

File 2

(D ^ A-4

r

i
b

A-4

r

1

J

i

A-3

D

A-14

PA CK

Pack merged
rime implicant
list area two
words to one/

Read MCARR
for this

\

equation

(File 1)

A-15

MAJOR
Create maJor

comparison key
for each merges

prime
implicant 1

Finished with No

t
l equations

Yes

Rewind File

^	 1	 /

E

A-S

A-6

a

J

A-5

A-4
A-6

E

Read MCARR
for this
equation
(File 1)

A-16

DUM 1

Pass extra
parameters
required
by SELECT

A-17

SELECT
Cr a to

compar^fson key
for use in
selecting

prime
implicants/

i

z

\Write prime/
implicants

and comparison
'keys on

A-5

I

r

A-5

F

A-29

PICK
Pick prime

implicant with
.argest comparison
key and continu^
until equation

A-6

A-7

t

-) A-o
G	 A-8(2)

Rewind File

2

selected
prime

mplicants
File 3

A-39

FGet
PACKS

 list of
candidate

(selected) pri.
\ implicants

to E	 i

Read File
2 for all
equations
but this

one y

Create %list of
prime implicants
used in other

equations

Read picked/
prime implicants
^ r this

quation
(File 3

A-40i

Pass extra
parameters
for cost
routine

H I A-8

i

s

3.

Write out
new

equation
►(File 2)^

G 1 A-7

A-7

A-8

A-41

COS T
Determine if

anv of the selected
but not picked
PIs are cheaper
than picked _PIs
\Build list/

Finished with No

all PIs
	JG A-7

Yes

	Any cost	 No

savings

	

Yes	
A

A-48	
A-51

	GETSAV	 P

Get maximum	 Unpack equation

cost saving	 prime implicants

entry from	 for all

\	 list	 equations

Read in	 / Print
equation / equation

with savin s prime

(File 2) implicants

A-49
FM	

CE
Replace

)ensive	 cube(s) Exit

with cheaper
cube (s) 1

E

A-11

Is
Yes

MCARR (K) - 2 ? ^"'^

No

or-

Ie	
YES

MCARR(K) - 0 ?

F0

D A- 10

Save K in E LIST

Increment E COUN'

clear J Flag in

this MCARR(J)

1

A-9
A 1 A-11

ALGORI A-2

Get ::cxt NON-ZERO

eYes

vertex (I) not	 NO
greater than last
ONE bit set

I blast ONE . Yes
	

Exit

bit _set ?

NO
A-12

SUBGEN
Calculate all
upper vertices
(J) for this I:
Flag NON-ZERO

A-11 vertices

:B rgest
ged	 J ,Fa lculate and save

current cube size
A-10

C A-13

ate next

rvert

N

ex (K) of

e_ (I,	 J)

No
 ir

ith

?

A-11

Clear J Flag

from all MrARR(L)

s

z

i^
4

A-10

I

i

D 1 A-9

Is	 Save K in L LIST

M('ARR(K)	 1
YES	 Increment L

[AUNT

NO

Save K in E LIST	 Is	 Save K in E LIST

	

NO covered size	 YES
Increment E COUNT	 for vertex	 Increment NONCNT

current cube size?

Is	
NO

K > J ?	 C A-9

YES

Is	
YES

L rOTJNT - 0 ?

No

Set all MCARR(L)
to: 1) current

cube size, 2)
MPINUM, 3) THREE

A-11

J

4•.

fe1j
	

'

F

Sr

AExit

11

A-", 2

A-13

IL

i1

,

A-14

3
s

i

	 A-4

PACK

Pack low order

16 bits of MPIl

into bits 17-32

of MPI2
	 iF

NO	 Finished with

list

YES

Exit

I^ -

A-15

MAJOR 1 A-4

Get next cube
to registers

CPI2) COUNT - 0

w

A-27

C. INITCV
Initialize for

CURRENT VERTEX

Transfer LO
VERTEX to

rURRENT VERTEX

Get W ARR

(CURRENT VERTEX)

right justify

	

Is MCARR	 NO
	 Is MCARR
	

No

	

entry - 1
	

entry - 2

	

YES
	

Yes

rOUNT =

COUNT + 1

A-28

Get next
CURRENT VERTEX

NO CURRENT VERTEX

HI VERTEX

YES

Add WINT to
bits 57-32 MPI2
and put in bits
51-32 MPI2

Finished with NO

all tubes

YES

V Exit

A-16

a

A-5

Di TM1

B1 --',-ADNST
B2 AMEND

B3 ^' ADMUL
B4 ADNFROM

B5 -^' ADNTO
B6 -^ AEMURR

x
39

i
t

I

i

CNT - CNT + 1

= 0

NO

YES Ia MCARR (('V)

= 1

No

8	 A-18

C

kk .
A-19

9

A-17

SELECT JA-5

Save address of
E and MPI NUM
get address of

MCARR A-19
00,\

A
i

3

Get vertices
from MPI2

CNT = 0

	If value of field	
Get count from	 MPI1 will contain

	

in MPI2 is larger	
bits 57 -32 of	 comparison keythan will fit in	

MPI2 and place in

	

MPI1 field set MPI1	
bits 56-40 of MPI1

field to all ONEs

CV LO VERTEX	 CV (Current vertex)

N^ A-27
INITCV

Initialize
for current
vertex routine

D	 A-18

Get MURR(CV)

Is MCARR(CV)1LYES
	

t MPI1 to
	 t	 ^

D

A-17

Store 15 in
bits 36 -39

.of MPI1

A-18

A-17

B

Is C'V 2• 	 NO
HI VERTEX

YES

CNT goes to
bits 6-20 and
bits 21 -35
of MPI1

C'NT = bits	 NO
40-56 of

MPI1

YES

Store bit count

in bits 36-39

of MPI1

Subtract
BIT COUNT -1
from the number
of ones in
LSIZE-1

Store result

in bits ?-5

of MPI1

C

lk- /
A-19

A-28	 k

CURVER
Get next
CURRENT
VERTEX

}

y

r

Increment

Master

. inished with NO
all MASTER

MP i s

YES
G

A-19
A-20	 DONT
A-21(2)	 CARE

A-22

r
i

E

f
i,

k

k

k

3

J

A-19
C	 A-17

A-18

inished with NO

all MPI21s

YES

Reinitialize
indices. Set
MASTER to

ZERO

Is MPI1	 YES

(MASTER) ZERO

NO

Is bit 59 YES
(MSB) of MPI2
(MASTER) set

Nk NO
Get vertices
from MPI2

(MASTER)

Set COMPARE

to MASTER +1

2YETYES inished with
ail COMPARE

MPIIs

NO

 IaMPI1
(COMMARE)

ZERO

NO

YESIa bit 59
of MPI2

COMPARE) set

NO

Get vertices
from MPI2

(C)OMPARE)

A-19 1 F

Increment

COMPARE

G

A-19

A IA-17

A-19
F) A-21

J A-20

I 1 A-21

J`

A-20

I

1

A-19

H

II VERTEX of MPI2
(MASTER)/ , HI

VERTEX of MPI2
(COMPARE)

RESULT = HI NO
VERTEX of

[PIWOMPARE

YES

LO VERTEX of MPI2
(MASTER)/\ LO
VERTEX of MPI2

(COMPARE)

LOULT = wNO
)VERTEX of

PI2 (MASTER)

YES

Set bit 59 of
MPI2 (COMPARE)

crement COMPARE

G

A-19

I 1 A-21

.	 t .

i

A-20(2)

r^

i

b

A-21

A-22 I

K is low vertex
of a new cube

DON'T A-19

CARE

Set K-0

set

INUM1 - MPINUM 	
A-22

YAA

i

f

4

{

=A

i

i

L is high vertex
of a new cube

Get value

of MURR (K)

A-22

Is value	 NO
BB

- 2

YES

Set index L to YES
K ! LSIZE

L SIZE-1

NO

Get value
ESSEN

of M(ARRk'L)
f A-25

Decrement L i A-24(2)

^A-23

1 c^c M

NO	
L { K

YES

BB

A-22

N

s value 2

YES

Set M to MPINUM

YES
M - MPINUMI

NO

(n A-23

Increment K

A-23

A-2,

i DD

i

GG
%..J
A-24

^I

i

A-22

A-22

A-23

I	 ^.

A-24

GG	 A-22

A-27
NITCV

Initialize
for current
vertex
routine

A-28
CURVER
Get next

CURRENT VERTEX,

Get value

of MCARR(CV)

Is value - 2

YES

NO
CV ^ L

YES

Pack K and L

into a new
entry for MPI2

Store packed

word into

MPI2 WINt1M1)

Store ONE into
MPI1 (MPINUMI)
and increment

MPINUMI

rC / A-22

NO	
CC 1 A-22

1

A-25
A-22
00^^

ESSEN

a

I

A-26

ETERM
Determine which
vertices of
MAP are covered
by only one

prime implicant

Set I-0

/ Is MAP (I)
covered by only NO
one prime

implicant

YES

Mark prime
implicant which

covers this
vertex as
essential

I - I + 1

I number
NO	 --

of vertices

in MAP

YES

EXIT

r

^e

A-26

A-25
ETERM A-36

Set all vertices
in MAP to not
covered state

I = 0

Is PI (I)	 NO

to be used

YES

Set each vertex
of this prime

implicant to

proper state

I - I + 1

NO 12 number
of prime
implicanta

YES

FXTT

ak

State 1 =
covered by this
prime implicant

State 2 =
covered by more
than one prime
implicant

A-27

NOTE:
A-15

	

A-17	 Required parameters

	

A-24	 LSIZE = size of Karnaugh map

	

A-31	
J - HI VERTEX

A-33

I = LO VERTEX

INITCV	
n AND

++ = OR

G)= Exclusive OR

I QD J 6) (LSIZE-1)
is stored in

EORCOMP

and EORTEMP

Exit

y y

NOTE:

Required Parameters a
i

I = LOW VERTEX t

J = HI VERTEX
s

CV - CURRENT VERTEX

A= AND
l

++ = OR

;^ = Exclusive OR {
i

A-15
A-18
A-24
A-32
A-33

CURVER

Pick UP EORCOMP

and EORTEMP

A-28

(EORCO" ++

EORTEMP) + 1
stored in
EORTEMP

CV -
(EORTEMP ++I)

J

Exit

NOTE:

Get MCARR for this

equation from disc

PICK A-6

Get addresses of

MPH, MPI2 and

E. Get MPINUM

Set I = 0

Set COUNT =0

A-30(2)
A-32 (/ C

IMAX = I
Store MPI1 (I)

and MPI2 (I) in
MPI1 MAX and MPI
MAXI= I+1

A-29
B	

A-30(3)
Get MPI1 (I)

MPI1(I)<	 YES	 I = I + 1
MPI1 MAX

NO

YES	 MPI1(I)

MPI1 MAXYES
_-__-- -- -- __	 It MPINUM

NO

No
B	

YES	
MPI1(I)-0

A-29	 NO
E

Get vertices of.	 A-31
MPI2(I) and

MPI2 MAX

D A-30

A-30

/ LO VERTEXMPI2MAX> LO 	 YESVERTEX MPI2(I) 	 B	 A-29
NO

LOTNOX
MPI2MO	 YES 	 0	 A-29VERTEI)

HI VERTEXMPI2MAX > HI 	 YES 	 B A-29VERTEX MPI2(I)NO
HI VERTEXMPI2MAX HI	 YESVERTEX MPI2(I)

fi0

B

A•29

A-29

A-32

A-34

r:

1

A-31

"
MPI1(I) =0	

YES	
I- I+1

NO

Get vertices
of MPI2(I)
1 COUNT - 0

3 COUNT = 0

CV = LO
VERTEX

of MPI2 Q)

I^F

TM YES

Set I=0

Set MCARR(CV)
= 2

r

f

i

1

i1
	 A-32

i!^3
	P?0 s MPI2 (IMAX YES	 Set MCARR(CV)

negative	 = 3

A-28
(URVER

	

V! HI VERTEX No	 Get next

of MPI2	 CURRENT VERTEX

Yes

Save MPI2
(IMAX) in E
(COUNT)

('OTJNT =
COUNT + 1

I=0
?

Get MPI1(I) I

(A-33

 G) A-34

^-,9	 kl.^
A-33	 A-29

A-33
H	 A-32

A-27
INITCV

Initialize
for CURRENT

VERTEX routine

Get MCARR(CV)

1 COUNT -
YES	 1 (OUNT + 1

MCARR (CV)-1	 3 COUNT
- 3 (OUNT + 1

NO

3 COUNT-
3 COUNT +1	 YES MCARR(CV) - 3

110	 A-28
CURVER

CV ? H1 VERTE No
	 Get next

of MPI2(I)	 CURRENT VERTEX

YES

Yes	 Set MPI1(I)
1 COUNT - 0	 - 0

NO

Set OLD 1 COUNT
- bits 21-35

of MPI1(I)

i

G

A-32

Set bits 40-56 of
MPI1(I) - bits 40-56
Of MPI1(I) - (OLD 1

COUNT - 1 COUNT

J

A-34

A-33
	

A-34

J

Set bits 21-35
of MPI1(I)

- 1 COUNT

Set bits 6 -23

of MPI1(I)

- 3 COUNT

G 1 A-32

{i
l^

E

i

i

f

1-

l	 t

i

A-35

NO I

*YES

of

A 1 A-37

A-36
A-6
000^^

REDUN

A-26

Determine which
vertices of
MAP are covered
by only one
prime implicant

Set discard fla
in all prime

implicants

Set I 2 0

F

Reset discard

flag in this
prime implicant

I - I + 1

z

k

{

S

A-37

EXIT

A-38

A-41(2)
A-43
A-44

A-45

eo,^^

HI LO

Mask X3 16 bits

left shifted 32
Mask X4 16 bits

left shifted 16

Puil out

LO VERTEX

Pull out

HI VERTEX

A-7
A -39

t

k

Y •.

i

A-7
	

A -40

1

VOTE:	 A-8

MPI2 contains prime implicants	 COST
for this equation

MPI1 contains prime implicants
for all other equations

Set index I

to ZERO

Set index J
to ZERO

Set index K
to ZERO.

t

A-41

A 1 A-46

Get E(I)

A-38
RI LO

Get HI dnd LO
vertices of

E(I)

LO VERTEX to XI

HI VERTEX to X2

B 1 A-42

Get MPI2 (J)

A-38

Get HI and LO

vertices of
MPI2 (J)

C

A-42

A-42
C	 A-41

A-4 7

SUBCUBE

Determine if
MPI2(J) is a
wubcube of E(Iy

r is riric k^	 YESthe same cube	 T A-46
as E(I)

NO

	

is MPI2(J)	 NO
a subcube
of E(I)

Yes

Save MPI2 (J)

in N BIT(K)

Increment K

Increment J

J ?number o No

	

terms in	 B A-41
e uation

YES

D

ll%.^

A-43

D 1 A-42

Any subcubes L
found

YES

T 1 A-46

A -43

Set PI COST - 1

Set index L

to ZERO

Get MPI1(L)

A-38

HILO
Get HI an
vertices of

M.°I1(L)

:

I) and Yes
1(L) the
me cube

. NO

d

4	 _

Increment L

^L
NO L _ number	 A-44

of term in

other equation

YES

Set Y to the
number of ONES
in the result of
HI VERi TEX 0 LO VERTEX

U) A-44

f

A-44

EE A-43

Set X to the
number of ONES
in the result

of LSIZE-1

l
Set PI (AST

X-Y+1

SUBCOST 0

Set index L A-43
A-45

T

I

r

i

H	 A-44
	 A-45

A-38
HILO

Get HI and
LO vertices

of MPI (M)

;ubcube used YES	 SUBCOST -
in other
equation
	

SUBCOST + 1

Increment M

a

umber of NO
in_ other
ations

Set Y to the

number of ONES in
the result of

®HI VERTEX LO
VERTEX of subcube

in NBIT(L)

SUBCOST -
SUBCOST +
(X-Y)+1

G

1-1^
A-44

Increment L

L I K	
p0	

F) A-44

YNS

J A-"

At number o NO
entries in
i inal cov

YES

Set MCSTNUK to

number of words

of MCARR used

A ! A-41

A-46

A-45

J

NO PI COST <

SUBCOST

Yee

In MCARR table
build section with
the following entries:l)
No.of subcubes 2) cost
savings 3) equation No.

4) prime implicants
5) subcubes

ip

T A-42

A-43

Increment I

1

A-47

A-42

SUBGUBE
i

HI VERTEX Ot
canddate JNO

ontainel_in HI
ERTEX of big

cube

YES

'LO VERTEX of
big cube	 NO

contained in-
LO VERTEX

YES

Set subcube	 Reset subcube

flag	 flag

a

T

i

A-48

GETSAV JA-8

Set index I

to ZERO

Get first cost
entry for

table
increment I

Get next

entry from

cost table

Cost of first NO
7 cost of

second

YES

Replace first

entry with

this one

Increment I

NO	 a Z. u%MWC&

of entries in
cost table

Yes

A-8	 A-49

REPIACE

Add less costly
cube to end of

equation	 R

Set index I to
ZERO

set index	 K to	 A-50
k

ZERO
C

1 Pick up equation

TERK(I)

Set index J

to ZERO

Get costly

cube (J)

quation to	 yes
I - costly	 B	 A-50

cube (J
NO

IncrementJ 1

J number	 ygg
of costly	 A A-50

A-49

.n a,

A-50

I

r

A-51

A-8

UNPACK

Set index I

to ZERO

Get PI (I)

Put HI VERTEX
into MPI2(I)
put LO VERTEX
into MPI1(I)

Increment I

NOLof

number
quation
erms

YES

BRIT

i

