28 research outputs found

    Resonant Auger spectroscopy at the L2,3 shake-up thresholds as a probe of electron correlation effects in nickel

    Full text link
    The excitation energy dependence of the three-hole satellites in the L3-M4,5M4,5 and L2-M4,5M4,5 Auger spectra of nickel metal has been measured using synchrotron radiation. The satellite behavior in the non-radiative emission spectra at the L3 and L2 thresholds is compared and the influence of the Coster-Kronig channel explored. The three-hole satellite intensity at the L3 Auger emission line reveals a peak structure at 5 eV above the L3 threshold attributed to resonant processes at the 2p53d9 shake-up threshold. This is discussed in connection with the 6-eV feature in the x-ray absorption spectrum.Comment: 8 pages, 4 figures; http://prb.aps.org/abstract/PRB/v58/i7/p3677_

    On the interpretation of spin-polarized electron energy loss spectra

    Full text link
    We study the origin of the structure in the spin-polarized electron energy loss spectroscopy (SPEELS) spectra of ferromagnetic crystals. Our study is based on a 3d tight-binding Fe model, with constant onsite Coulomb repulsion U between electrons of opposite spin. We find it is not the total density of Stoner states as a function of energy loss which determines the response of the system in the Stoner region, as usually thought, but the densities of Stoner states for only a few interband transitions. Which transitions are important depends ultimately on how strongly umklapp processes couple the corresponding bands. This allows us to show, in particular, that the Stoner peak in SPEELS spectra does not necessarily indicate the value of the exchange splitting energy. Thus, the common assumption that this peak allows us to estimate the magnetic moment through its correlation with exchange splitting should be reconsidered, both in bulk and surface studies. Furthermore, we are able to show that the above mechanism is one of the main causes for the typical broadness of experimental spectra. Finally, our model predicts that optical spin waves should be excited in SPEELS experiments.Comment: 11 pages, 7 eps figures, REVTeX fil

    Evidence for

    No full text
    The electronic structure of the layered compound 1T-\chem{TiTe_2}, before and after deposition of \chem{Rb}, was studied by angle-resolved photoelectron spectroscopy. \chem{Rb} 4p core-level spectra were found to consist of two spin-orbit doublets, of which one could be unambiguously attributed to intercalated \chem{Rb}. Valence band spectra, which were compared with band structure calculations, provided further support that \chem{Rb} was intercalated, in conflict with recent claims. Possible explanations of the conflicting results are discussed

    Scanning tunneling microscopy and spectroscopy of Na intercalation in VSe 2

    No full text

    Atomic origin of the scanning tunneling microscopy images of charge-density-waves on 1T-TaSe2

    No full text
    We show atomically resolved scanning tunneling microscopy (STM) images of charge density waves (CDWs) at room temperature together with angle-resolved photoelectron band-mapping of 1T-TaSe2. By comparing the results of these two techniques, we demonstrate the atomic structure of the CDW-features observed by the STM and atomic origin of the reconstructed band-structure in this material. (c) 2007 Elsevier B.V. All rights reserved

    Atomic origin of the scanning tunneling microscopy images of charge-density-waves on 1T-TaSe2

    No full text
    We show atomically resolved scanning tunneling microscopy (STM) images of charge density waves (CDWs) at room temperature together with angle-resolved photoelectron band-mapping of 1T-TaSe2. By comparing the results of these two techniques, we demonstrate the atomic structure of the CDW-features observed by the STM and atomic origin of the reconstructed band-structure in this material. (c) 2007 Elsevier B.V. All rights reserved
    corecore