168 research outputs found

    Analysis of the rain basin depressions of Clay County, Nebraska.

    Get PDF
    Introduction: The state of Nebraska has an area of 76,612 square miles and is divided into thirteen distinct physiographic regions (Figure 1). In recent years, attention has been focused upon one particular portion of the Central Loess Plains—the “rainbasin area” or, as it is sometimes called, the “rainwater basin”

    Measuring and modeling near surface reflected and emitted radiation fluxes at the FIFE site

    Get PDF
    Research was conducted during the four Intensive Field Campaigns (IFC) of the FIFE project in 1987. The research was done on a tall grass prairie with specific measurement sites on and near the Konza Prairie in Kansas. Measurements were made to help meet the following objectives: determination of the variability in reflected and emitted radiation fluxes in selected spectral wavebands as a function of topography and vegetative community; development of techniques to account for slope and sun angle effects on the radiation fluxes; estimation of shortwave albedo and net radiation fluxes using the reflected and emitted spectral measurements described; estimation of leaf and canopy spectral properties from calculated normalized differences coupled with off-nadir measurements using inversion techniques; estimation of plant water status at several locations with indices utilizing plant temperature and other environmental parameters; and determination of relationships between estimated plant water status and measured soil water content. Results are discussed

    Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site

    Get PDF
    Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study

    Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images

    Get PDF
    Grassland degradation has accelerated in recent decades in response to increased climate variability and human activity. Rangeland and grassland conditions directly affect forage quality, livestock production, and regional grassland resources. In this study, we examined the potential of integrating synthetic aperture radar (SAR, Sentinel-1) and optical remote sensing (Landsat-8 and Sentinel-2) data to monitor the conditions of a native pasture and an introduced pasture in Oklahoma, USA. Leaf area index (LAI) and aboveground biomass (AGB) were used as indicators of pasture conditions under varying climate and human activities. We estimated the seasonal dynamics of LAI and AGB using Sentinel-1 (S1), Landsat-8 (LC8), and Sentinel-2 (S2) data, both individually and integrally, applying three widely used algorithms: Multiple Linear Regression (MLR), Support Vector Machine (SVM), and Random Forest (RF). Results indicated that integration of LC8 and S2 data provided sufficient data to capture the seasonal dynamics of grasslands at a 10–30-m spatial resolution and improved assessments of critical phenology stages in both pluvial and dry years. The satellite-based LAI and AGB models developed from ground measurements in 2015 reasonably predicted the seasonal dynamics and spatial heterogeneity of LAI and AGB in 2016. By comparison, the integration of S1, LC8, and S2 has the potential to improve the estimation of LAI and AGB more than 30% relative to the performance of S1 at low vegetation cover (LAI \u3c 2m2/m2, AGB \u3c 500 g/m2) and optical data of LC8 and S2 at high vegetation cover (LAI \u3e 2m2/m2, AGB \u3e 500 g/m2). These results demonstrate the potential of combining S1, LC8, and S2 monitoring grazing tallgrass prairie to provide timely and accurate data for grassland management

    Biophysical characterization and surface radiation balance

    Get PDF
    The Kursk 1991 Experiment (KUREX-91) was conducted as one of a suite of international studies to develop capabilities to monitor global change. The studies were designed specifically to understand the earth's land-surface vegetation and atmospheric boundary layer interaction. An intensive field campaign was conducted at a site near Kursk, Russia during the month of July in 1991 by a team of international scientists to aid in the understanding of land-surface-atmosphere interactions in an agricultural/grassland setting. We were one of several teams of scientists participating at KUREX-91 at the Streletskaya Steppe Researve near Kursk, Russia. The main goals of our research were to: (1) characterize biophysical properties of the prairie vegetation; and (2) to characterize radiation regime through measurements and from estimates derived from canopy bidirectional reflectance data. Four objectives were defined to achieve these goals: (1) determine dependence of leaf optical properties on leaf water potential of some dominant species in discrete wavebands in the visible, near-infrared, and mid-infrared (spanning 0.4-2.3 microns range); (2) characterize the effective leaf area index (LAI) and leaf angle distribution of prairie vegetation; (3) characterize the radiation regime of the prairie vegetation through measures of the radiation balance components; and (4) examine, develop, and test methods for estimating albedo, APAR, and LAI from canopy bidirectional reflectance data. Papers which were the result of the research efforts are included

    Comparison of Measured and Modeled Radiation, Heat, and Water Vapor Fluxes: Fife Pilot Study (CAMaC Progress Report 87-7)

    Get PDF
    Mémoire de fin d'étude du diplôme de conservateur d'Elydia Barret, promotion 22 portant sur les humanités numériques, publié par les Collections numériques de l’Enssib en janvier 2014 : http://www.enssib.fr/bibliotheque-numerique/notices/64711-quel-role-pour-les-bibliotheques-dans-les-humanites-numeriques Les humanités numériques sont nées au tournant du XXIe siècle avec l’arrivée de l’internet qui ouvre un nouveau chapitre dans l’histoire des rapports des technologies numériques et des scien..

    Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    Get PDF
    The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning

    Impact of Eastern Redcedar Proliferation on Water Resources in the Great Plains USA—Current State of Knowledge

    Get PDF
    In the Great Plains of the central United States, water resources for human and aquatic life rely primarily on surface runoff and local recharge from rangelands that are under rapid transformation to woodland by the encroachment of Eastern redcedar (redcedar; Juniperus virginiana) trees. In this synthesis, the current understanding and impact of redcedar encroachment on the water budget and water resources available for non-ecosystem use are reviewed. Existing studies concluded that the conversion from herbaceous-dominated rangeland to redcedar woodland increases precipitation loss to canopy interception and vegetation transpiration. The decrease of soil moisture, particularly for the subsurface soil layer, is widely documented. The depletion of soil moisture is directly related to the observed decrease in surface runoff, and the potential of deep recharge for redcedar encroached watersheds. Model simulations suggest that complete conversion of the rangelands to redcedar woodland at the watershed and basin scale in the South-central Great Plains would lead to reduced streamflow throughout the year, with the reductions of streamflow between 20 to 40% depending on the aridity of the climate of the watershed. Recommended topics for future studies include: (i) The spatial dynamics of redcedar proliferation and its impact on water budget across a regional hydrologic network; (ii) the temporal dynamics of precipitation interception by the herbaceous canopy; (iii) the impact of redcedar infilling into deciduous forests such as the Cross Timbers and its impact on water budget and water availability for non-ecosystem use; (iv) land surface and climate interaction and cross-scale hydrological modeling and forecasting; (v) impact of redcedar encroachment on sediment production and water quality; and (vi) assessment and efficacy of different redcedar control measures in restoring hydrological functions of watershed
    • …
    corecore