878 research outputs found

    The contribution of open extremity fractures to infection in multiply injured patients

    Full text link
    We sought to determine whether a contaminated open fracture was a reliable component for calculating the Outcome Predictive Score in patients with multiple injuries. We studied 41 patients whose primary source of contamination was open extremity fractures. Only one of the 41 patients developed osteomyelitis. The rate of infection from an open fracture is minimal in the multiply injured patient. Inclusion of patients with open fractures in studies that assess the likelihood of infection and the value of anti-infective agents incorrectly identified patients for clinical trials and results in an overestimation of survival based on the Outcome Predictive Score. These findings suggest that open fractures should be excluded as an entry criterion in future clinical trials.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31658/1/0000592.pd

    Mechanisms and Difference-Making

    Get PDF
    I argue that difference-making should be a crucial element for evaluating the quality of evidence for mechanisms, especially with respect to the robustness of mechanisms, and that it should take central stage when it comes to the general role played by mechanisms in establishing causal claims in medicine. The difference- making of mechanisms should provide additional compelling reasons to accept the gist of Russo-Williamson thesis and include mechanisms in the protocols for Evidence- Based Medicine (EBM), as the EBM+ research group has been advocatin

    Design and Performance of a Novel Low Energy Multi-Species Beamline for the ALPHA Antihydrogen Experiment

    Full text link
    The ALPHA Collaboration, based at the CERN Antiproton Decelerator, has recently implemented a novel beamline for low-energy (\lesssim 100 eV) positron and antiproton transport between cylindrical Penning traps that have strong axial magnetic fields. Here, we describe how a combination of semianalytical and numerical calculations were used to optimise the layout and design of this beamline. Using experimental measurements taken during the initial commissioning of the instrument, we evaluate its performance and validate the models used for its development. By combining data from a range of sources, we show that the beamline has a high transfer efficiency, and estimate that the percentage of particles captured in the experiments from each bunch is (78 ±\pm 3)% for up to 10510^{5} antiprotons, and (71 ±\pm 5)% for bunches of up to 10710^{7} positrons.Comment: 15 pages, 15 figure

    Linking Ecomechanical Models and Functional Traits to Understand Phenotypic Diversity

    Get PDF
    Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments. This \u27ecomechanical approach\u27 integrates functional organismal traits with the ecological variables. This approach informs our ability to predict species shifts in survival and distribution and provides critical insights into phenotypic diversity. We outline how to use the ecomechanical paradigm using drag-induced bending in trees as an example. Our approach can be incorporated into existing research and help build interdisciplinary bridges. Finally, we identify key factors needed for mass data collection, analysis, and the dissemination of models relevant to this framework

    Investigation of the fine structure of antihydrogen

    Get PDF
    At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fne structure of atomic hydrogen: a separation of the 2S1/2_{1/2} and 2P1/2_{1/2} states1. The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics2–5. Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fne structure in the n=n= 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S–2P Lyman-α transitions in antihydrogen6 , we determine their frequencies in a magnetic feld of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfne interactions, we infer the zero-feld fne-structure splitting (2P1/2_{1/2}–2P3/2_{3/2}) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S–2S transition frequency6,7, we fnd that the classic Lamb shift in antihydrogen (2S1/2_{1/2}–2P1/2_{1/2} splitting at zero feld) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fne structure and the Lamb shift in the antihydrogen spectrum as tests of the charge– parity–time symmetry8 and towards the determination of other fundamental quantities, such as the antiproton charge radius9,10, in this antimatter system

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of the energy asymmetry in tt¯ j production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

    Get PDF
    A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139fb-1 of data collected by the ATLAS detector at the Large Hadron Collider during pp collisions at s=13TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic tt¯ decay channel, and the hadronically decaying top quark must have transverse momentum above 350GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be - 0.043 ± 0.020 , in agreement with the SM prediction of - 0.037 ± 0.003. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits

    Measurement of the energy response of the ATLAS calorimeter to charged pions from W±→ τ±(→ π±ντ) ντ events in Run 2 data

    Get PDF
    The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range 10 < pT< 300 GeV. The measurement is performed using 139 fb - 1 of LHC proton–proton collision data at s=13 TeV taken in Run 2 by the ATLAS detector. Charged pions originating from τ-lepton decays are used to provide a sample of high-pT isolated particles, where the composition is known, to test an energy regime that has not previously been probed by in situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by ∼ 2 % across a large part of the pT spectrum in the central region and underestimated by ∼ 4 % in the endcaps in the ATLAS simulation. The uncertainties in the measurements are ≲ 1 % for 15 < pT< 185 GeV in the central region. To investigate the source of the discrepancies, the width of the distribution of the ratio of calorimeter energy to track momentum, the energies per layer and response in the hadronic calorimeter are also compared between data and simulation
    corecore