25,260 research outputs found
LP-decodable multipermutation codes
In this paper, we introduce a new way of constructing and decoding
multipermutation codes. Multipermutations are permutations of a multiset that
may consist of duplicate entries. We first introduce a new class of matrices
called multipermutation matrices. We characterize the convex hull of
multipermutation matrices. Based on this characterization, we propose a new
class of codes that we term LP-decodable multipermutation codes. Then, we
derive two LP decoding algorithms. We first formulate an LP decoding problem
for memoryless channels. We then derive an LP algorithm that minimizes the
Chebyshev distance. Finally, we show a numerical example of our algorithm.Comment: This work was supported by NSF and NSERC. To appear at the 2014
Allerton Conferenc
Hardware Based Projection onto The Parity Polytope and Probability Simplex
This paper is concerned with the adaptation to hardware of methods for
Euclidean norm projections onto the parity polytope and probability simplex. We
first refine recent efforts to develop efficient methods of projection onto the
parity polytope. Our resulting algorithm can be configured to have either
average computational complexity or worst case
complexity on a serial processor where
is the dimension of projection space. We show how to adapt our projection
routine to hardware. Our projection method uses a sub-routine that involves
another Euclidean projection; onto the probability simplex. We therefore
explain how to adapt to hardware a well know simplex projection algorithm. The
hardware implementations of both projection algorithms achieve area scalings of
at a delay of
. Finally, we present numerical results in
which we evaluate the fixed-point accuracy and resource scaling of these
algorithms when targeting a modern FPGA
Collisional Grooming Models of the Kuiper Belt Dust Cloud
We modeled the 3-D structure of the Kuiper Belt dust cloud at four different
dust production rates, incorporating both planet-dust interactions and
grain-grain collisions using the collisional grooming algorithm. Simulated
images of a model with a face-on optical depth of ~10^-4 primarily show an
azimuthally-symmetric ring at 40-47 AU in submillimeter and infrared
wavelengths; this ring is associated with the cold classical Kuiper Belt. For
models with lower optical depths (10^-6 and 10^-7), synthetic infrared images
show that the ring widens and a gap opens in the ring at the location of of
Neptune; this feature is caused by trapping of dust grains in Neptune's mean
motion resonances. At low optical depths, a secondary ring also appears
associated with the hole cleared in the center of the disk by Saturn. Our
simulations, which incorporate 25 different grain sizes, illustrate that
grain-grain collisions are important in sculpting today's Kuiper Belt dust, and
probably other aspects of the Solar System dust complex; collisions erase all
signs of azimuthal asymmetry from the submillimeter image of the disk at every
dust level we considered. The model images switch from being dominated by
resonantly-trapped small grains ("transport dominated") to being dominated by
the birth ring ("collision dominated") when the optical depth reaches a
critical value of tau ~ v/c, where v is the local Keplerian speed.Comment: 31 pages, including 9 figure
Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering
Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced.Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering.Methods. Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition.Results. Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ≳10−4. Loosely bound grains with surface binding energies of the order of 0.1–1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering.Conclusions. The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres
Blowup and Fixed Points
Blowing up a point p in a manifold M builds a new manifold M' in which p is
replaced by the projectivization of the tangent space of M at p. This
well-known operation also applies to fixed points of diffeomorphisms, yielding
continuous homomorphisms between automorphism groups of M and M'. The
construction for maps involves a loss of regularity and is not unique at the
lowest order of differentiability. Fixed point sets and other aspects of
blownup dynamics at the singular locus are described in terms of derivative
data; continuous data are not sufficient to determine much about these issues.Comment: 12 pages, LaTeX2e with amsmath, amssymb, epsf, amscd packages, and
amsart or Contemporary Math documentclass, five Postscript figure
The Brain Drain, “Educated Unemployment,” Human Capital Formation, and Economic Betterment
Extending both the “harmful brain drain” literature and the “beneficial brain gain” literature, this paper analyzes both the negative and the positive impact of migration by skilled individuals in a unified framework. The paper extends the received literature on the “harmful brain drain” by showing that in the short run, international migration can result in “educated unemployment” and overeducation in developing countries, as well as a brain drain from these countries. A simulation suggests that the costs of “educated unemployment” and overeducation can amount to significant losses for the individuals concerned, who may constitute a substantial proportion of the educated individuals. Adopting a dynamic framework, it is then shown that due to the positive externality of the prevailing, economy-wide endowment of human capital on the formation of human capital, a relaxation in migration policy in both the current period and the preceding period can facilitate “take-off” of a developing country in the current period. Thus, it is suggested that while the migration of some educated individuals may reduce the social welfare of those who stay behind in the short run, it improves it in the long run.
- …
