5,238 research outputs found

    The Lyman Continuum Escape Survey: Ionizing Radiation from [O III]-Strong Sources at a Redshift of 3.1

    Get PDF
    We present results from the LymAn Continuum Escape Survey (LACES), a Hubble Space Telescope (HST) program designed to characterize the ionizing radiation emerging from a sample of Lyman alpha emitting galaxies at redshift z≃3.1z\simeq 3.1. As many show intense [O III] emission characteristic of z>6.5z>6.5 star-forming galaxies, they may represent valuable low redshift analogs of galaxies in the reionization era. Using HST Wide Field Camera 3 / UVIS F336WF336W to image Lyman continuum emission, we investigate the escape fraction of ionizing photons in this sample. For 61 sources, of which 77% are spectroscopically confirmed and 53 have measures of [O III] emission, we detect Lyman continuum leakage in 20%, a rate significantly higher than is seen in individual continuum-selected Lyman break galaxies. We estimate there is a 98% probability that ≤2\leq 2 of our detections could be affected by foreground contamination. Fitting multi-band spectral energy distributions (SEDs) to take account of the varying stellar populations, dust extinctions and metallicities, we derive individual Lyman continuum escape fractions corrected for foreground intergalactic absorption. We find escape fractions of 15 to 60% for individual objects, and infer an average 20% escape fraction by fitting composite SEDs for our detected samples. Surprisingly however, even a deep stack of those sources with no individual F336WF336W detections provides a stringent upper limit on the average escape fraction of less than 0.5%. We examine various correlations with source properties and discuss the implications in the context of the popular picture that cosmic reionization is driven by such compact, low metallicity star-forming galaxies.Comment: 26 pages, 16 figures, accepted for publication in Ap

    Asymptotic enumeration of incidence matrices

    Full text link
    We discuss the problem of counting {\em incidence matrices}, i.e. zero-one matrices with no zero rows or columns. Using different approaches we give three different proofs for the leading asymptotics for the number of matrices with nn ones as n→∞n\to\infty. We also give refined results for the asymptotic number of i×ji\times j incidence matrices with nn ones.Comment: jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    The azimuth structure of nuclear collisions -- I

    Full text link
    We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.Comment: 27 pages, 12 figure

    Bromine measurements in ozone depleted air over the Arctic Ocean

    Get PDF
    In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL). Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Fast (1 s) and sensitive (detection limits at the low pptv level) measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS) instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere

    Atomic Carbon in Galaxies

    Get PDF
    We present new measurements of the ground state fine-structure line of atomic carbon at 492 GHz in a variety of nearby external galaxies, ranging from spiral to irregular, interacting and merging types. In comparison with CO(1-0), the CI(1-0) intensity stays fairly comparable in the different environments, with an average value of the ratio of the line integrated areas in Kkm/s of CI(1-0)/CO(1-0) = 0.2 +/- 0.2. However, some variations can be found within galaxies, or between galaxies. Relative to CO lines, CI(1-0) is weaker in galactic nuclei, but stronger in disks, particularly outside star forming regions. Also, in NGC 891, the CI(1-0) emission follows the dust continuum at 1.3mm extremely well along the full length of the major axis where molecular gas is more abundant than atomic gas. Atomic carbon therefore appears to be a good tracer of molecular gas in external galaxies, possibly more reliable than CO. Atomic carbon can contribute significantly to the thermal budget of interstellar gas. Cooling due to C and CO amounts typically to 2 x 10^{-5} of the FIR continuum or 5% of the CII line. However, C and CO cooling reaches 30% of the gas total, in Ultra Luminous InfraRed Galaxies, where CII is abnormally faint. Together with CII/FIR, the emissivity ratio CI(1-0)/FIR can be used as a measure of the non-ionizing UV radiation field in galaxies.Comment: 26 pages, 8 figure

    RNA-binding protein CPEB1 remodels host and viral RNA landscapes.

    Get PDF
    Host and virus interactions occurring at the post-transcriptional level are critical for infection but remain poorly understood. Here, we performed comprehensive transcriptome-wide analyses revealing that human cytomegalovirus (HCMV) infection results in widespread alternative splicing (AS), shortening of 3' untranslated regions (3' UTRs) and lengthening of poly(A)-tails in host gene transcripts. We found that the host RNA-binding protein CPEB1 was highly induced after infection, and ectopic expression of CPEB1 in noninfected cells recapitulated infection-related post-transcriptional changes. CPEB1 was also required for poly(A)-tail lengthening of viral RNAs important for productive infection. Strikingly, depletion of CPEB1 reversed infection-related cytopathology and post-transcriptional changes, and decreased productive HCMV titers. Host RNA processing was also altered in herpes simplex virus-2 (HSV-2)-infected cells, thereby indicating that this phenomenon might be a common occurrence during herpesvirus infections. We anticipate that our work may serve as a starting point for therapeutic targeting of host RNA-binding proteins in herpesvirus infections

    Probing for Exoplanets Hiding in Dusty Debris Disks: Disk Imaging, Characterization, and Exploration with HST/STIS Multi-Roll Coronagraphy

    Get PDF
    Spatially resolved scattered-light images of circumstellar (CS) debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, systemic architectures, and forces perturbing starlight-scattering CS material. Using HST/STIS optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in ten CS debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances > 5 AU for the nearest stars, and simultaneously resolve disk substructures well beyond, corresponding to the giant planet and Kuiper belt regions in our Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. We present new results inclusive of fainter disks such as HD92945 confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures, significant asymmetries and complex morphologies include: HD181327 with a posited spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested interacting with the local ISM; HD15115 & HD32297, discussed also in the context of environmental interactions. These disks, and HD15745, suggest debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, out-of-plane surface brightness asymmetries at > 5 AU may implicate one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System.Comment: 109 pages, 43 figures, accepted for publication in the Astronomical Journa

    Exploring differences in adverse symptom event grading thresholds between clinicians and patients in the clinical trial setting

    Get PDF
    Symptomatic adverse event (AE) monitoring is essential in cancer clinical trials to assess patient safety, as well as inform decisions related to treatment and continued trial participation. As prior research has demonstrated that conventional concordance metrics (e.g., intraclass correlation) may not capture nuanced aspects of the association between clinician and patient-graded AEs, we aimed to characterize differences in AE grading thresholds between doctors (MDs), registered nurses (RNs), and patients using the Bayesian Graded Item Response Model (GRM)

    A New, Bright, Short-Period, Emission Line Binary in Ophiuchus

    Full text link
    The 11th magnitude star LS IV -08 3 has been classified previously as an OB star in the Luminous Stars survey, or alternatively as a hot subdwarf. It is actually a binary star. We present spectroscopy, spectroscopic orbital elements, and time series photometry, from observations made at the Kitt Peak National Observatory 2.1m, Steward Observatory 2.3m, MDM Observatory 1.3m and 2.4m, Hobby-Eberly 9.2m, and Michigan State University 0.6m telescopes. The star exhibits emission of varying strength in the cores of H and He I absorption lines. Emission is also present at 4686 Angstroms (He II) and near 4640/4650 Angstroms (N III/C III). Time-series spectroscopy collected from 2005 July to 2007 June shows coherent, periodic radial velocity variations of the H-alpha line, which we interpret as orbital motion with a period of 0.1952894(10) days. High-resolution spectra show that there are two emission components, one broad and one narrow, moving in antiphase, as might arise from an accretion disk and the irradiated face of the mass donor star. Less coherent, low-amplitude photometric variability is also present on a timescale similar to the orbital period. Diffuse interstellar bands indicate considerable reddening, which however is consistent with a distance of ~100-200 pc. The star is the likely counterpart of a weak ROSAT X-ray source, whose properties are consistent with accretion in a cataclysmic variable (CV) binary system. We classify LS IV -08 3 as a new member of the UX UMa subclass of CV stars.Comment: To be published in AJ, 16 pages, 6 figures. Uses AAS Late

    The CASSOWARY spectroscopy survey: a new sample of gravitationally lensed galaxies in SDSS

    Get PDF
    Bright gravitationally lensed galaxies provide our most detailed view of galaxies at high redshift. The very brightest (r < 21) systems enable high spatial and spectral resolution measurements, offering unique constraints on the outflow energetics, metallicity gradients and stellar populations in high-redshift galaxies. Yet as a result of the small number of ultrabright z ≃ 2 lensed systems with confirmed redshifts, most detailed spectroscopic studies have been limited in their scope. With the goal of increasing the number of bright lensed galaxies available for detailed follow-up, we have undertaken a spectroscopic campaign targeting wide separation (≳3 arcsec) galaxy–galaxy lens candidates within the Sloan Digital Sky Survey (SDSS). Building on the earlier efforts of our Cambridge and Sloan Survey Of Wide Arcs in Thesky survey, we target a large sample of candidate galaxy–galaxy lens systems in SDSS using a well-established search algorithm which identifies blue arc-like structures situated around luminous red galaxies. In this paper, we present a new redshift catalogue containing 29 lensed sources in SDSS confirmed through spectroscopic follow-up of candidate galaxy–galaxy lens systems. Included in this new sample are two of the brightest galaxies (r = 19.6 and 19.7) known at z ≃ 2, a low metallicity (12 + log (O/H) ≃ 8.0) extreme nebular line emitting galaxy at z = 1.43, and numerous systems for which detailed follow-up will be possible. The source redshifts span 0.9 < z < 2.5 (median redshift of 1.9), and their optical magnitudes are in the range 19.6 ≲ r ≲ 22.3. We present a brief source-by-source discussion of the spectroscopic properties extracted from our confirmatory spectra and discuss some initial science results. Preliminary lens modelling reveals average source magnifications of 5–10 times. With more than 50 gravitationally lensed z ≳ 1 galaxies now confirmed within SDSS, it will soon be possible for the first time to develop generalized conclusions from detailed spectroscopic studies of the brightest lensed systems at high redshift
    • …
    corecore