512 research outputs found

    Nonlinear limits to the information capacity of optical fiber communications

    Get PDF
    The exponential growth in the rate at which information can be communicated through an optical fiber is a key element in the so called information revolution. However, like all exponential growth laws, there are physical limits to be considered. The nonlinear nature of the propagation of light in optical fiber has made these limits difficult to elucidate. Here we obtain basic insights into the limits to the information capacity of an optical fiber arising from these nonlinearities. The key simplification lies in relating the nonlinear channel to a linear channel with multiplicative noise, for which we are able to obtain analytical results. In fundamental distinction to the linear additive noise case, the capacity does not grow indefinitely with increasing signal power, but has a maximal value. The ideas presented here have broader implications for other nonlinear information channels, such as those involved in sensory transduction in neurobiology. These have been often examined using additive noise linear channel models, and as we show here, nonlinearities can change the picture qualitatively.Comment: 1 figure, 7 pages, submitted to Natur

    MAKE A DELIRIOUS NOISE: Improvising Urbanism in New Orleans, Louisiana

    Get PDF
    Decades of poor urban design choices and a lack of attention to the characteristics of communities have played prominent roles in the fracturing of urban communities and the relegation of those without means to the edges of the urban fabric: poverty and powerlessness abetted by geographic location. Rather than “restitching” the urban whole back together, I argue that progress can be made through the generation of local nodes of identity: a polynucleated urban condition. The development of spaces to magnify community identity with respect to localized characteristics produces a community focus to replace the unattainable (for those without means) city center. The end result is heterogeneous nodes of identity, characterized by local conditions, that offer access to and from the surrounding nodes. I apply this proposition to the city of New Orleans, Louisiana. Its urban division stands as an example of the ability of infrastructure, geography and socioeconomics to fracture a city. The project is an execution of a masterplan for an under-utilized portion of eastern New Orleans that generates a defined neighborhood identity. I contend that a delirious architecture magnifies neighborhood characteristics provides a place to display unique community identity

    Indian Policing: Agents of Assimilation

    Get PDF

    Reproduction and Dispersal of Biological Soil Crust Organisms

    Get PDF
    Biological soil crusts (BSCs) consist of a diverse and highly integrated community of organisms that effectively colonize and collectively stabilize soil surfaces. BSCs vary in terms of soil chemistry and texture as well as the environmental parameters that combine to support unique combinations of organisms—including cyanobacteria dominated, lichen-dominated, and bryophyte-dominated crusts. The list of organismal groups that make up BSC communities in various and unique combinations include—free living, lichenized, and mycorrhizal fungi, chemoheterotrophic bacteria, cyanobacteria, diazotrophic bacteria and archaea, eukaryotic algae, and bryophytes. The various BSC organismal groups demonstrate several common characteristics including—desiccation and extreme temperature tolerance, production of various soil binding chemistries, a near exclusive dependency on asexual reproduction, a pattern of aerial dispersal over impressive distances, and a universal vulnerability to a wide range of human-related perturbations. With this publication, we provide literature-based insights as to how each organismal group contributes to the formation and maintenance of the structural and functional attributes of BSCs, how they reproduce, and how they are dispersed. We also emphasize the importance of effective application of molecular and microenvironment sampling and assessment tools in order to provide cogent and essential answers that will allow scientists and land managers to better understand and manage the biodiversity and functional relationships of soil crust communities

    Sensory neuron differentiation is regulated by Notch signaling in the trigeminal placode

    Get PDF
    AbstractTrigeminal sensory neurons develop from the neural crest and neurogenic placodes, and have been studied as a principal model of sensory neuron formation. While the Notch pathway has been extensively characterized in central nervous system development and other developmental processes, it has not been well characterized in sensory neurogenesis. Here we studied the functional role of Notch signaling in the trigeminal ophthalmic (opV) placode, a prime model of sensory neurogenesis. To establish a good spatiotemporal description of Notch pathway genes in the chick trigeminal placode, a stage-specific expression analysis was conducted, showing that expression of most Notch pathway genes and effectors are expressed in the placode, with expression primarily being confined to ectodermal cells. Expression was highest at stages of peak neuronal differentiation. To test the function of Notch signaling in opV placode cell differentiation, Notch receptor cleavage was blocked using the gamma-secretase inhibitor, DAPT, or signaling was activated by misexpression of the Notch intracellular domain (NICD). Notch activation resulted in a significant reduction in sensory neurogenesis. Cells remained in the ectoderm and did not differentiate. Expression of the opV specification marker Pax3 was also lost in targeted cells. DAPT exposure resulted in a dramatic increase in neurogenesis without increasing proliferation, where many differentiated cells were found in the mesenchyme and, surprisingly, within the ectoderm. This is the first result clearly showing prolific neuronal differentiation in the ectoderm of the trigeminal placodes after experimental manipulation of a molecular signaling pathway, thus identifying Notch signaling as a primary regulator of the sensory neuron fate in the opV placode

    Intravenous Lidocaine and Ketamine Infusions for Headache Disorders: A Retrospective Cohort Study

    Get PDF
    Introduction: The use of lidocaine (lignocaine) and ketamine infusion in the inpatient treatment of patients with headache disorders is supported by small case series. We undertook a retrospective cohort study in order to assess the efficacy, duration and safety of lidocaine and ketamine infusions. Methods: Patients admitted between 01/01/2018 and 31/07/2021 were identified by ICD code and electronic prescription. Efficacy of infusion was determined by reduction in visual analog score (VAS), and patient demographics were collected from review of the hospital electronic medical record. Results: Through the study period, 83 infusions (50 lidocaine, 33 ketamine) were initiated for a headache disorder (77 migraine, three NDPH, two SUNCT, one cluster headache). In migraine, lidocaine infusion achieved a ≥50% reduction in pain in 51.1% over a mean 6.2 days (SD 2.4). Ketamine infusion was associated with a ≥50% reduction in pain in 34.4% over a mean 5.1 days (SD 1.5). Side effects were observed in 32 and 42.4% respectively. Infusion for medication overuse headache (MOH) led to successful withdrawal of analgesia in 61.1% of lidocaine, and 41.7% of ketamine infusions. Conclusion: Lidocaine and ketamine infusions are an efficacious inpatient treatment for headache disorders, however associated with prolonged length-of-stay and possible side-effects
    • …
    corecore