1,438 research outputs found

    Investigation of diamond biocompatible coatings for medical implants

    Get PDF
    Despite the advantages of diamond-like carbon fi lms that are used as wear-resistant coatings for implants, they may have a number of disadvantages such as the high level of internal tension, low adhesive durability and high sensitivity to environment conditions. These problems can be overcome by application of the new carbon nanocomposite coatings that can be deposited from C60 ionic beam. It was found that the proposed diamond-like nanocomposite coatings increase implant material resistance to electrochemical corrosion processes due to shift of its electrode potential to area of positive values, and also promote a complex of reparative and adaptation and compensatory reorganizations that will allow to accelerate processes of healing and postoperative adaptation of organism in zone of implant inputting.Незважаючи на переваги діамантоподібних вуглецевих покриттів, що використовуються в якості зносостійких захисних покриттів для імплантатів, вони можуть мати ряд недоліків, таких як високий рівень внутрішніх напружень, низька адгезійна міцність, висока чутливість до умов навколишнього середовища. Ці проблеми можуть бути подолані в разі застосування нових вуглецевих нанокомпозитних покриттів, нанесених з іонного пучка С60. Встановлено, що запропоновані діамантоподібні нанокомпозитні покриття підвищують опірність матеріалу імплантату до електрохімічних корозійних процесів за рахунок зміщення його електродного потенціалу в область позитивних значень, а також сприяють комплексу репаративних і адаптаційно-компенсаторних перебудов, що дозволить прискорити процеси загоєння та післяопераційної адаптації організму в зоні введення імплантату

    Changes in the vector of industrial policy and possibilities for the innovative development of the industrial regions

    Full text link
    In the present paper, reasons for the increased interest in industrial policy in both developed and developing countries are explained. The systematisation of the results of the development of Russian industry from 1989 to 2014 showed a lack of systematic selection of its priorities, preventing the formation of a strategic vector of industrial policy. The target diversity of the industrial policy is established at the different economic development stages of the country. In the context of economic sanctions against Russia, it is shown that the emergence of a new industrial policy vector is connected to the need for import substitution and concomitant changes in the development model of the domestic economy. The dynamics and characteristics of the industrial development area are shown by the example of a highly developed region like the Central Urals. The total level of organisational innovation activity continues to be low and composes only 12%, although in the manufacturing sector this index is higher than the regional economy index by four absolute percentage points. The industrial policy of the Central Urals is analysed and innovation drivers of the industrial sector of the regional economy are established. The possibilities of the defence, civil engineering, mining, chemical/pharmaceutical and forestry complexes of the Sverdlovsk Region to implement its import substitution policy are explained. The most significant investment projects that will reduce the import dependence of the regional economy are presented. The possibilities of the research sector and created innovation infrastructure of the region in solving this problem are shown. It is necessary to develop the regional laws on the elaboration of industrial policy according to the basic regulations of the Federal Law “On Industrial Policy in the Russian Federation.”This article has been prepared with the support of the Russian Humanitarian Science Foundation Grant 14-02-00331 «Innovative and technological development of the region: assessment, forecasting and ways of achievement.

    Entropy-Enthalpy Compensation May Be a Useful Interpretation Tool for Complex Systems Like Protein-DNA Complexes: An Appeal to Experimentalists

    Full text link
    In various chemical systems enthalpy-entropy compensation (EEC) is a well-known rule of behavior, although the physical roots of it are still not completely understood. It has been frequently questioned whether EEC is a truly physical phenomenon or a coincidence due to trivial mathematical connections between statistical-mechanical parameters - or even simpler: A phantom effect resulting from the misinterpretation of experimental data. Here, we review EEC from a new standpoint using the notion of correlation which is essential for the method of factor analysis, but is not conventional in physics and chemistry. We conclude that the EEC may be rationalized in terms of hidden (not directly measurable with the help of the current experimental set-up) but physically real factors, implying a Carnot-cycle model in which a micro-phase transition (MPT) plays a crucial role. Examples of such MPTs underlying physically valid EEC should be typically cooperative processes in supramolecular aggregates, like changes of structured water at hydrophobic surfaces, conformational transitions upon ligand-biopolymer binding, and so on, so forth. The MPT notion could help rationalize the occurrence of EEC in connection with hydration and folding of proteins,enzymatic reactions, functioning of molecular motors, DNA de- and rehybridization, as well as similar phenomena.Comment: 8 pages, 2 Figures, Submitted for publicatio

    ORTHODONTIC TREATMENT WITH Nd-Fe-B MAGNETS

    Get PDF
    The aim. The development of methodology for experimental and theoretical assessment of interaction forces between magnets in an orthodontic apparatus, the test of corrosion resistance of protective oxide and nitride coatings deposited on Nd-Fe-B magnets surface. Materials and methods. The Nd-Fe-B permanent magnets with saturation magnetization Ms≈1100 G and bilayer ZrN / ZrO2 coatings were used. To experimental measure of interaction forces between magnets the device was assembled on the base of analytical balance. The distance between the magnets was varied using non-magnetic plates. The ZrO2 and ZrN coatings have been analyzed for their corrosion properties in 0.9 % NaCl quasi-physiological solution. Results. An original method was proposed for calculating of magnetic interaction forces for materials with high magnetic anisotropy, which has good agreement with experimental measurement of forces. The theoretical model takes into account the size of the magnets and the mutual influence of their opposite faces. An increase of corrosion resistance of magnetic materials can be provided by zirconium oxide or nitride compounds, which contribute to inhibition of electrochemical corrosion of Nd-Fe-B magnets. Conclusions. A method for calculating of interaction forces between permanent magnets, which are used for correction of malocclusion in orthodontic, has been developed. The passivation of the Nd-Fe-B permanent magnets surface can be achieved by applying of bilayer ZrN / ZrO2 coating

    'Meyer-Neldel Rule': True History of its Development and its Intimate Connection to Classical Thermodynamics

    Get PDF
    The history of the Meyer-Neldel rule's development and the initial collective efforts toward its comprehension have been described here. The whole story gives a nice occasion to trigger thorough analysis of the basic thermodynamic laws and looking for the true sense of the entropy notion

    Can quantum regression theorem be reconciled with quantum fluctuation dissipation theorem ?

    Full text link
    In the attempt to derive the regression theorem from the fluctuation dissipation theorem several authors claim the violation of the former theorem in the quantum case. Here we pose the question: does it exists a quantum fluctuation dissipation theorem (QFDT) in its conventional interpretation? It is shown that the relation usually called as the QFDT is the condition of detailed macroscopic energetic balance. Following this interpretation the existing conflict between the two theorems in the quantum case is removed.Comment: 13 pages, 3rd Int. Conf. on Unsolved Problems on Noise (will be published in Proceedings

    Entropy-Enthalpy Compensation and its Significance - in Particular for Nanoscale Events

    Get PDF
    The basic thermodynamics behind the well-known, up to now hotly debated, notion of entropy-enthalpy compensation (EEC) is analyzed here in detail. Namely, any valid EEC phenomenon is considered using Carnot-cycle-type model, in which micro-phase transitions (MPTs) play a crucial role. Such MPTs could typically be some cooperative processes in (supra)molecular aggregates. Thus, the MPT notion ought to help rationalize the occurrence of the EEC in connection with some pertinent microscopic mechanisms
    corecore