27 research outputs found

    Heterogeneous profiles of coupled sleep oscillations in human hippocampus

    Get PDF
    Cross-frequency coupling of sleep oscillations is thought to mediate memory consolidation. While the hippocampus is deemed central to this process, detailed knowledge of which oscillatory rhythms interact in the sleeping human hippocampus is lacking. Combining intracranial hippocampal and non-invasive electroencephalography from twelve neurosurgical patients, we characterized spectral power and coupling during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Hippocampal coupling was extensive, with the majority of channels expressing spectral interactions. NREM consistently showed delta–ripple coupling, but ripples were also modulated by slow oscillations (SOs) and sleep spindles. SO–delta and SO–theta coupling, as well as interactions between delta/theta and spindle/beta frequencies also occurred. During REM, limited interactions between delta/theta and beta frequencies emerged. Moreover, oscillatory organization differed substantially between i) hippocampus and scalp, ii) sites along the anterior-posterior hippocampal axis, and iii) individuals. Overall, these results extend and refine our understanding of hippocampal sleep oscillations

    Alpha Rhythms Reveal When and Where Item and Associative Memories Are Retrieved

    Get PDF
    Memories for past experiences can range from vague recognition to full-blown recall of associated details. Electroencephalography has shown that recall signals unfold a few hundred milliseconds after simple recognition, but has only provided limited insights into the underlying brain networks. Functional magnetic resonance imaging (fMRI) has revealed a “core recollection network” (CRN) centered on posterior parietal and medial temporal lobe regions, but the temporal dynamics of these regions during retrieval remain largely unknown. Here we used Magnetoencephalography in a memory paradigm assessing correct rejection (CR) of lures, item recognition (IR) and associative recall (AR) in human participants of both sexes. We found that power decreases in the alpha frequency band (10–12 Hz) systematically track different mnemonic outcomes in both time and space: Over left posterior sensors, alpha power decreased in a stepwise fashion from 500 ms onward, first from CR to IR and then from IR to AR. When projecting alpha power into source space, the CRN known from fMRI studies emerged, including posterior parietal cortex (PPC) and hippocampus. While PPC showed a monotonic change across conditions, hippocampal effects were specific to recall. These region-specific effects were corroborated by a separate fMRI dataset. Importantly, alpha power time courses revealed a temporal dissociation between item and associative memory in hippocampus and PPC, with earlier AR effects in hippocampus. Our data thus link engagement of the CRN to the temporal dynamics of episodic memory and highlight the role of alpha rhythms in revealing when and where different types of memories are retrieved

    Alpha Rhythms Reveal When and Where Item and Associative Memories Are Retrieved.

    Get PDF
    Memories for past experiences can range from vague recognition to full-blown recall of associated details. Electroencephalography has shown that recall signals unfold a few hundred milliseconds after simple recognition, but has only provided limited insights into the underlying brain networks. Functional magnetic resonance imaging (fMRI) has revealed a "core recollection network" (CRN) centered on posterior parietal and medial temporal lobe regions, but the temporal dynamics of these regions during retrieval remain largely unknown. Here we used Magnetoencephalography in a memory paradigm assessing correct rejection (CR) of lures, item recognition (IR) and associative recall (AR) in human participants of both sexes. We found that power decreases in the alpha frequency band (10-12 Hz) systematically track different mnemonic outcomes in both time and space: Over left posterior sensors, alpha power decreased in a stepwise fashion from 500 ms onward, first from CR to IR and then from IR to AR. When projecting alpha power into source space, the CRN known from fMRI studies emerged, including posterior parietal cortex (PPC) and hippocampus. While PPC showed a monotonic change across conditions, hippocampal effects were specific to recall. These region-specific effects were corroborated by a separate fMRI dataset. Importantly, alpha power time courses revealed a temporal dissociation between item and associative memory in hippocampus and PPC, with earlier AR effects in hippocampus. Our data thus link engagement of the CRN to the temporal dynamics of episodic memory and highlight the role of alpha rhythms in revealing when and where different types of memories are retrieved.SIGNIFICANCE STATEMENT Our ability to remember ranges from the vague feeling of familiarity to vivid recollection of associated details. Scientific understanding of episodic memory thus far relied upon separate lines of research focusing on either temporal (via electroencephalography) or spatial (via functional magnetic resonance imaging) dimensions. However, both techniques have limitations that have hindered understanding of when and where memories are retrieved. Capitalizing on the enhanced temporal and spatial resolution of magnetoencephalography, we show that changes in alpha power reveal both when and where different types of memory are retrieved. Having access to the temporal and spatial characteristics of successful retrieval provided new insights into the cross-regional dynamics in the hippocampus and parietal cortex

    Theta phase synchronization between the human hippocampus and prefrontal cortex increases during encoding of unexpected information: A case study

    Get PDF
    Events that violate predictions are thought to not only modulate activity within the hippocampus and PFC but also enhance communication between the two regions. Scalp and intracranial EEG studies have shown that oscillations in the theta frequency band are enhanced during processing of contextually unexpected information. Some theories suggest that the hippocampus and PFC interact during processing of unexpected events, and it is possible that theta oscillations may mediate these interactions. Here, we had the rare opportunity to conduct simultaneous electrophysiological recordings from the human hippocampus and PFC from two patients undergoing presurgical evaluation for pharmacoresistant epilepsy. Recordings were conducted during a task that involved encoding of contextually expected and unexpected visual stimuli. Across both patients, hippocampal–prefrontal theta phase synchronization was significantly higher during encoding of contextually unexpected study items, relative to contextually expected study items. Furthermore, the hippocampal–prefrontal theta phase synchronization was larger for contextually unexpected items that were later remembered compared with later forgotten items. Moreover, we did not find increased theta synchronization between the PFC and rhinal cortex, suggesting that the observed effects were specific to prefrontal–hippocampal interactions. Our findings are consistent with the idea that theta oscillations orchestrate communication between the hippocampus and PFC in support of enhanced encoding of contextually deviant information

    Recollection in the human hippocampal-entorhinal cell circuitry

    Get PDF
    The hippocampus is involved both in episodic memory recall and scene processing. Here, the authors show that hippocampal neurons first process scene cues before coordinating memory-guided pattern completion in adjacent entorhinal cortex

    Content Tuning in the Medial Temporal Lobe Cortex: Voxels that Perceive, Retrieve.

    Get PDF
    How do we recall vivid details from our past based only on sparse cues? Research suggests that the phenomenological reinstatement of past experiences is accompanied by neural reinstatement of the original percept. This process critically depends on the medial temporal lobe (MTL). Within the MTL, perirhinal cortex (PRC) and parahippocampal cortex (PHC) are thought to support encoding and recall of objects and scenes, respectively, with the hippocampus (HC) serving as a content-independent hub. If the fidelity of recall indeed arises from neural reinstatement of perceptual activity, then successful recall should preferentially draw upon those neural populations within content-sensitive MTL cortex that are tuned to the same content during perception. We tested this hypothesis by having eighteen human participants undergo functional MRI (fMRI) while they encoded and recalled objects and scenes paired with words. Critically, recall was cued with the words only. While HC distinguished successful from unsuccessful recall of both objects and scenes, PRC and PHC were preferentially engaged during successful versus unsuccessful object and scene recall, respectively. Importantly, within PRC and PHC, this content-sensitive recall was predicted by content tuning during perception: Across PRC voxels, we observed a positive relationship between object tuning during perception and successful object recall, while across PHC voxels, we observed a positive relationship between scene tuning during perception and successful scene recall. Our results thus highlight content-based roles of MTL cortical regions for episodic memory and reveal a direct mapping between content-specific tuning during perception and successful recall

    Hippocampal neurons code individual episodic memories in humans

    Get PDF
    The hippocampus is an essential hub for episodic memory processing. However, how human hippocampal single neurons code multi-element associations remains unknown. In particular, it is debated whether each hippocampal neuron represents an invariant element within an episode or whether single neurons bind together all the elements of a discrete episodic memory. Here we provide evidence for the latter hypothesis. Using single-neuron recordings from a total of 30 participants, we show that individual neurons, which we term episode-specific neurons, code discrete episodic memories using either a rate code or a temporal firing code. These neurons were observed exclusively in the hippocampus. Importantly, these episode-specific neurons do not reflect the coding of a particular element in the episode (that is, concept or time). Instead, they code for the conjunction of the different elements that make up the episode

    A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations

    Get PDF
    Article suggests that common standards for recording, detection, and reporting for intracranial recordings in humans that suggest their role in episodic and semantic memory does not exist. Authors of the article outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations, and argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery

    Selective and shared contributions of the hippocampus and perirhinal cortex to episodic item and associative encoding

    No full text
    & Although the general role of the medial-temporal lobe (MTL) in episodic memory is well established, controversy surrounds the precise division of labor between distinct MTL subregions. The perirhinal cortex (PrC) has been hypothesized to support nonassociative item encoding that contributes to later familiarity, whereas the hippocampus supports associative encoding that selectively contributes to later recollection. However, because previous paradigms have predominantly used recollection of the item context as a measure of associative encoding, it remains unclear whether recollection of different kinds of episodic detail depends on the same or different MTL encoding operations. In our current functional magnetic resonance imaging study, we devised a subsequent memory paradigm that assessed successful item encoding in addition to the encoding of two distinct episodic details: an item–color and an item–context detail. Hippocampal encoding activation was selectively enhanced during trials leading to successful recovery of either an item–color or item–context association. Moreover, the magnitude of hippocampal activation correlated with the number, and not the kind, of associated details successfully bound, providing strong evidence for a role of the hippocampus in domain-general associative encoding. By contrast, PrC encoding activation correlated with both nonassociative item encoding as well as associative item– color binding, but not with item–context binding. This pattern suggests that the PrC contributions to memory encoding may be domain-specific and limited to the binding of items with presented item-related features. Critically, together with a separately conducted behavioral study, these data raise the possibility that PrC encoding operations—in conjunction with hippocampal mechanisms—contribute to later recollection of presented item details. &amp

    Behavioral/Systems/Cognitive Differential Encoding Mechanisms for Subsequent Associative Recognition and Free Recall

    No full text
    Recent neuroimaging studies have successfully identified encoding mechanisms that support different forms of subsequent episodic recognition memory. In our everyday lives, however, much of our episodic memory retrieval is accomplished by means of free recall, i.e., retrieval without an external recognition cue. In this study, we used functional magnetic resonance imaging to investigate the encoding mechanisms that support later free recall and their relationship to those that support different forms of later recognition memory. First, in agreement with previous work, we found that activation in the left inferior frontal gyrus and hippocampus correlated with later associative/relational recognition. In these regions, activation was further enhanced for items later freely recalled, pointing to shared underlying relational encoding mechanisms whose magnitude of activation differentiates later successful free recall from successful associative recognition. Critically, we also found evidence for free recall-specific encoding mechanisms that did not, in our paradigm, support later associative recognition compared with item recognition. These free recall-specific effects were observed in left mid/dorsolateral prefrontal (DLPFC) and bilateral posterior parietal cortices (PPC). We speculate that the higher-level working memory operations associated with DLPFC and attention to internal mnemonic representations perhaps mediated via PPC may serve to embed an item into a rich associative network during encoding that facilitates later access to the item. Finally, activation in the perirhinal cortex correlated with successful associative binding regardless of the form of later memory, i.e., recognition or free recall, providing novel evidence for the role of the perirhinal cortex in episodic intra-item encoding
    corecore